ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (8)
  • 1
    Publication Date: 2020-04-28
    Description: In September 2015, the members of United Nations adopted the 2030 Agenda for Sustainable Development with universal applicability of 17 Sustainable Development Goals (SDGs) and 169 targets. The SDGs are consequential for the development of the countries in the Nile watershed, which are affected by water scarcity and experiencing rapid urbanization associated with population growth. Earth Observation (EO) has become an important tool to monitor the progress and implementation of specific SDG targets through its wide accessibility and global coverage. In addition, the advancement of algorithms and tools deployed in cloud computing platforms provide an equal opportunity to use EO for developing countries with limited technological capacity. This study applies EO and cloud computing in support of the SDG 6 “clean water and sanitation” and SDG 11 “sustainable cities and communities” in the seven Nile watershed countries through investigations of EO data related to indicators of water stress (Indicator 6.4.2) and urbanization and living conditions (Indicators 11.3.1 and 11.1.1), respectively. Multiple approaches including harmonic, time series and correlational analysis are used to assess and evaluate these indicators. In addition, a contemporary deep-learning classifier, fully convolution neural networks (FCNN), was trained to classify the percentage of impervious surface areas. The results show the spatial and temporal water recharge pattern among different regions in the Nile watershed, as well as the urbanization in selected cities of the region. It is noted that the classifier trained from the developed countries (i.e., the United States) is effective in identifying modern communities yet limited in monitoring rural and slum regions.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-08
    Description: Air pollution is reported as one of the most severe environmental problems in the Middle East and North Africa (MENA) region. Remotely sensed data from newly available TROPOMI - TROPOspheric Monitoring Instrument on board Sentinel-5 Precursor, shows an annual mean of high-resolution maps of selected air quality indicators (NO2, CO, O3, and UVAI) of the MENA countries for the first time. The correlation analysis among the aforementioned indicators show the coherency of the air pollutants in urban areas. Multi-year data from the Aerosol Robotic Network (AERONET) stations from nine MENA countries are utilized here to study the aerosol optical depth (AOD) and Ångström exponent (AE) with other available observations. Additionally, a total of 65 different machine learning models of four categories, namely: linear regression, ensemble, decision tree, and deep neural network (DNN), were built from multiple data sources (MODIS, MISR, OMI, and MERRA-2) to predict the best usable AOD product as compared to AERONET data. DNN validates well against AERONET data and proves to be the best model to generate optimized aerosol products when the ground observations are insufficient. This approach can improve the knowledge of air pollutant variability and intensity in the MENA region for decision makers to operate proper mitigation strategies.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-24
    Description: This research addresses the aerosol characteristics and variability over Cairo and the Greater Delta region over the last 20 years using an integrative multi-sensor approach of remotely sensed and PM10 ground data. The accuracy of these satellite aerosol products is also evaluated and compared through cross-validation against ground observations from the AErosol RObotic NETwork (AERONET) project measured at local stations. The results show the validity of using Multi-angle Imaging Spectroradiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms for quantitative aerosol optical depth (AOD) assessment as compared to Ozone Monitoring Instrument (OMI), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), and POLarization and Directionality of the Earth’s Reflectances (POLDER). In addition, extracted MISR-based aerosol products have been proven to be quite effective in investigating the characteristics of mixed aerosols. Daily AERONET AOD observations were collected and classified using K-means unsupervised machine learning algorithms, showing five typical patterns of aerosols in the region under investigation. Four seasonal aerosol emerging episodes are identified and analyzed using multiple indicators, including aerosol optical depth (AOD), size distribution, single scattering albedo (SSA), and Ångström exponent (AE). The movements and detailed aerosol composition of the aforementioned episodes are demonstrated using NASA’s Goddard Space Flight Center (GSFC) back trajectories model in collaboration with aerosol subtype products from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission. These episodes indicate that during the spring, fall, and summer, most of the severe aerosol events are caused by dust or mixed related scenarios, whereas during winter, aerosols of finer size lead to severe heavy conditions. It also demonstrates the impacts of different aerosol sources on urban human health, which are presented by the variations of multiple parameters, including solar radiation, air temperature, humidity, and UV exposure. Scarce ground PM10 data were collected and compared against satellite products, yet owed to their discrete nature of availability, our approach made use of the Random Decision Forest (RDF) model to convert satellite-based AOD and other meteorological parameters to predict PM10. The RDF model with inputs from the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) and Global Land Data Assimilation System (GLDAS) datasets improves the performance of using AOD products to estimate PM10 values. The connection between climate variability and aerosol intensity, as well as their impact on health-related PM2.5 over Egypt is also demonstrated.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-29
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2021-02-15
    Description: The Grand Ethiopian Renaissance Dam (GERD), formerly known as the Millennium Dam, has been filling at a fast rate. This project has created issues for the Nile Basin countries of Egypt, Sudan, and Ethiopia. The filling of GERD has an impact on the Nile Basin hydrology and specifically the water storages (lakes/reservoirs) and flow downstream. In this study, through the analysis of multi-source satellite imagery, we study the filling of the GERD reservoir. The time-series generated using Sentinel-1 SAR imagery displays the number of classified water pixels in the dam from early June 2017 to September 2020, indicating a contrasting trend in August and September 2020 for the upstream/downstream water bodies: upstream of the dam rises steeply, while downstream decreases. Our time-series analysis also shows the average monthly precipitation (derived using IMERG) in the Blue Nile Basin in Ethiopia has received an abnormally high amount of rainfall as well as a high amount of runoff (analyzed using GLDAS output). Simultaneously, the study also demonstrates the drying trend downstream at Lake Nasser in Southern Egypt before December 2020. From our results, we estimate that the volume of water at GERD has already increased by 3.584 billion cubic meters, which accounts for about 5.3% of its planned capacity (67.37 billion cubic meters) from 9 July–30 November 2020. Finally, we observed an increasing trend in GRACE anomalies for GERD, whereas, for the Lake Nasser, we observed a decreasing trend. In addition, our study discusses potential interactions between GERD and the rainfall and resulting flood in Sudan. Our study suggests that attention should be drawn to the connection between the GERD filling and potential drought in the downstream countries during the upcoming dry spells in the Blue Nile River Basin. This study provides an open-source technique using Google Earth Engine (GEE) to monitor the changes in water level during the filling of the GERD reservoir. GEE proves to be a powerful as well as an efficient way of analyzing computationally intensive SAR images.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-04
    Description: Drylands cover about 40% of the world’s land area and support two billion people, most of them living in developing countries that are at risk due to land degradation. Over the last few decades, there has been warming, with an escalation of drought and rapid population growth. This will further intensify the risk of desertification, which will seriously affect the local ecological environment, food security and people’s lives. The goal of this research is to analyze the hydrological and land cover characteristics and variability over global arid and semi-arid regions over the last decade (2010–2019) using an integrative approach of remotely sensed and physical process-based numerical modeling (e.g., Global Land Data Assimilation System (GLDAS) and Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation System (FLDAS) models) data. Interaction between hydrological and ecological indicators including precipitation, evapotranspiration, surface soil moisture and vegetation indices are presented in the global four types of arid and semi-arid areas. The trends followed by precipitation, evapotranspiration and surface soil moisture over the decade are also mapped using harmonic analysis. This study also shows that some hotspots in these global drylands, which exhibit different processes of land cover change, demonstrate strong coherency with noted groundwater variations. Various types of statistical measures are computed using the satellite and model derived values over global arid and semi-arid regions. Comparisons between satellite- (NASA-USDA Surface Soil Moisture and MODIS Evapotranspiration data) and model (FLDAS and GLDAS)-derived values over arid regions (BSh, BSk, BWh and BWk) have shown the over and underestimation with low accuracy. Moreover, general consistency is apparent in most of the regions between GLDAS and FLDAS model, while a strong discrepancy is also observed in some regions, especially appearing in the Nile Basin downstream hyper-arid region. Data-driven modelling approaches are thus used to enhance the models’ performance in this region, which shows improved results in multiple statistical measures ((RMSE), bias (ψ), the mean absolute percentage difference (|ψ|)) and the linear regression coefficients (i.e., slope, intercept, and coefficient of determination (R2)).
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-26
    Description: The Grand Ethiopian Renaissance Dam (GERD), formerly known as the Millennium Dam, is currently under construction and has been filling at a fast rate without sufficient known analysis on possible impacts on the body of the structure. The filling of GERD not only has an impact on the Blue Nile Basin hydrology, water storage and flow but also poses massive risks in case of collapse. Rosaries Dam located in Sudan at only 116 km downstream of GERD, along with the 20 million Sudanese benefiting from that dam, would be seriously threatened in case of the collapse of GERD. In this study, through the analysis of Sentinal-1 satellite imagery, we show concerning deformation patterns associated with different sections of the GERD’s Main Dam (structure RCC Dam type) and the Saddle Dam (Embankment Dam type). We processed 109 descending mode scenes from Sentinel-1 SAR imagery, from December 2016 to July 2021, using the Differential Synthetic Aperture Radar Interferometry technique to demonstrate the deformation trends of both—the GERD’s Main and Saddle Dams. The time series generated from the analysis clearly indicates different displacement trends at various sections of the GERD as well as the Saddle Dam. Results of the multi-temporal data analysis on and around the project area show inconsistent subsidence at the extremities of the GERD Main Dam, especially the west side of the dam where we recorded varying displacements in the range of 10 mm to 90 mm at the crest of the dam. We conducted the current analysis after masking the images with a coherence value of 0.9 and hence, the subsequent results are extremely reliable and accurate. Further decomposition of the subsiding rate has revealed higher vertical displacement over the west side of the GERD’s Main Dam as compared to the east side. The local geological structures consisting of weak zones under the GERD’s accompanying Saddle Dam adds further instability to its structure. We identified seven critical nodes on the Saddle Dam that match the tectonic faults lying underneath it, and which display a varying degree of vertical displacements. In fact, the nodes located next to each other displayed varying displacement trends: one or more nodes displayed subsidence since 2017 while the other node in the same section displayed uplift. The geological weak zones underneath and the weight of the Saddle Dam itself may somewhat explain this inconsistency and the non-uniform vertical displacements. For the most affected cells, we observed a total displacement value of ~90 mm during the whole study period (~20 mm/year) for the Main Dam while the value of the total displacement for the Saddle dam is ~380 mm during the same period (~85 mm/year). Analysis through CoastSat tool also suggested a non-uniformity in trends of surface water-edge at the two extremities of the Main Dam.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...