ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (6)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-08-27
    Description: Severe hydrometeorological hazards such as floods, droughts, and thunderstorms are expected to increase in the future due to climate change. Due to the significant impacts of these phenomena, it is essential to develop new and advanced early warning systems for advance preparation of the population and local authorities (civil protection, government agencies, etc.). Therefore, reliable forecasts of extreme events, with high spatial and temporal resolution and a very short time horizon are needed, due to the very fast development and localized nature of these events. In very short time-periods (up to 6 h), small-scale phenomena can be described accurately by adopting a “nowcasting” approach, providing reliable short-term forecasts and warnings. To this end, a novel nowcasting system was developed and presented in this study, combining a data assimilation system (LAPS), a large amount of observed data, including XPOL radar precipitation measurements, the Chemical Hydrological Atmospheric Ocean wave System (CHAOS), and the WRF-Hydro model. The system was evaluated on the catastrophic flash flood event that occurred in the sub-urban area of Mandra in Western Attica, Greece, on 15 November 2017. The event was one of the most catastrophic flash floods with human fatalities (24 people died) and extensive infrastructure damage. The update of the simulations with assimilated radar data improved the initial precipitation description and led to an improved simulation of the evolution of the phenomenon. Statistical evaluation and comparison with flood data from the FloodHub showed that the nowcasting system could have provided reliable early warning of the flood event 1, 2, and even to 3 h in advance, giving vital time to the local authorities to mobilize and even prevent fatalities and injuries to the local population.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-22
    Description: In this study, the performance and characteristics of the advanced cloud nucleation scheme of Fountoukis and Nenes, embedded in the fully coupled Weather Research and Forecasting/Chemistry (WRF/Chem) model, are investigated. Furthermore, the impact of dust particles on the distribution of the cloud condensation nuclei (CCN) and the way they modify the pattern of the precipitation are also examined. For the simulation of dust particle concentration, the Georgia Tech Goddard Global Ozone Chemistry Aerosol Radiation and Transport of Air Force Weather Agency (GOCART-AFWA) is used as it includes components for the representation of dust emission and transport. The aerosol activation parameterization scheme of Fountoukis and Nenes has been implemented in the six-class WRF double-moment (WDM6) microphysics scheme, which treats the CCN distribution as a prognostic variable, but does not take into account the concentration of dust aerosols. Additionally, the presence of dust particles that may facilitate the activation of CCN into cloud or rain droplets has also been incorporated in the cumulus scheme of Grell and Freitas. The embedded scheme is assessed through a case study of significant dust advection over the Western Mediterranean, characterized by severe rainfall. Inclusion of CCN based on prognostic dust particles leads to the suppression of precipitation over hazy areas. On the contrary, precipitation is enhanced over areas away from the dust event. The new prognostic CCN distribution improves in general the forecasting skill of the model as bias scores, the root mean square error (RMSE), false alarm ratio (FAR) and frequencies of missed forecasts (FOM) are limited when modelled data are compared against satellite, LIDAR and aircraft observations.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-07
    Description: In this study, the physically-based hydrological model MIKE SHE was employed to investigate the effects of anthropogenic land cover changes to the hydrological cycle components of a regional watershed in Central Greece. Three case studies based on the land cover of the years 1960, 1990, and 2018 were examined. Copernicus Climate Change Service E-OBS gridded meteorological data for 45 hydrological years were used as forcing for the model. Evaluation against observational data yielded sufficient quality for daily air temperature and precipitation. Simulation results demonstrated that the climatic variabilities primarily in precipitation and secondarily in air temperature affected basin-averaged annual actual evapotranspiration and average annual river discharge. Nevertheless, land cover effects can locally outflank the impact of climatic variability as indicated by the low interannual variabilities of differences in annual actual evapotranspiration among case studies. The transition from forest to pastures or agricultural land reduced annual actual evapotranspiration and increased average annual river discharge while intensifying the vulnerability to hydrometeorological-related hazards such as droughts or floods. Hence, the quantitative assessment of land cover effects presented in this study can contribute to the design and implementation of successful land cover and climate change mitigation and adaptation policies.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-28
    Description: Urban areas often experience high precipitation rates and heights associated with flash flood events. Atmospheric and hydrological models in combination with remote-sensing and surface observations are used to analyze these phenomena. This study aims to conduct a hydrometeorological analysis of a flash flood event that took place in the sub-urban area of Mandra, western Attica, Greece, using remote-sensing observations and the Chemical Hydrological Atmospheric Ocean Wave System (CHAOS) modeling system that includes the Advanced Weather Research Forecasting (WRF-ARW) model and the hydrological model (WRF-Hydro). The flash flood was caused by a severe storm during the morning of 15 November 2017 around Mandra area resulting in extensive damages and 24 fatalities. The X-band dual-polarization (XPOL) weather radar of the National Observatory of Athens (NOA) observed precipitation rates reaching 140 mm/h in the core of the storm. CHAOS simulation unveils the persistent orographic convergence of humid southeasterly airflow over Pateras mountain as the dominant parameter for the evolution of the storm. WRF-Hydro simulated the flood using three different precipitation estimations as forcing data, obtained from the CHAOS simulation (CHAOS-hydro), the XPOL weather radar (XPOL-hydro) and the Global Precipitation Measurement (GMP)/Integrated Multi-satellitE Retrievals for GPM (IMERG) satellite dataset (GPM/IMERG-hydro). The findings indicate that GPM/IMERG-hydro underestimated the flood magnitude. On the other hand, XPOL-hydro simulation resulted to discharge about 115 m3/s and water level exceeding 3 m in Soures and Agia Aikaterini streams, which finally inundated. CHAOS-hydro estimated approximately the half water level and even lower discharge compared to XPOL-hydro simulation. Comparing site-detailed post-surveys of flood extent, XPOL-hydro is characterized by overestimation while CHAOS-hydro and GPM/IMERG-hydro present underestimation. However, CHAOS-hydro shows enough skill to simulate the flooded areas despite the forecast inaccuracies of numerical weather prediction. Overall, the simulation results demonstrate the potential benefit of using high-resolution observations from a X-band dual-polarization radar as an additional forcing component in model precipitation simulations.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-10-06
    Description: The principal objective of this study is to present and evaluate an advanced dust wet deposition scheme in the Weather and Research Forecasting model coupled with Chemistry (WRF-Chem). As far as the chemistry component is concerned, the Georgia Tech Goddard Global Ozone Chemistry Aerosol Radiation and Transport of the Air Force Weather Agency (GOCART-AFWA) module is applied, as it supports a binary scheme for dust emissions and transport. However, the GOCART-AFWA aerosol module does not incorporate a wet scavenging scheme, nor does it interact with cloud processes. The integration of a dust wet deposition scheme following Seinfeld and Pandis into the WRF-Chem model is assessed through a case study of large-scale Saharan dust transport over the Eastern Mediterranean that is characterized by severe wet deposition over Greece. An acceptable agreement was found between the calculated and measured near surface PM10 concentrations, as well as when model estimated atmospheric optical depth (AOD) was validated against the AERONET measurements, indicating the validity of our dust wet deposition scheme.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-09
    Description: Atmospheric-chemical coupled models usually parameterize sea-salt aerosol (SSA) emissions using whitecap fraction estimated considering only wind speed and ignoring sea state. This approach may introduce inaccuracies in SSA simulation. This study aims to assess the impact of sea state on SSA modeling, applying a new parameterization for whitecap fraction estimation based on wave age, calculated by the ratio between wave phase velocity and wind speed. To this end, the new parameterization was incorporated in the coupled Chemical Hydrological Atmospheric Ocean wave modeling System (CHAOS). CHAOS encompasses the wave model (WAM) two-way coupled through the OASIS3-MCT coupler with the Advanced Weather Research and Forecasting model coupled with Chemistry (WRF-ARW-Chem) and, thus, enabling the concurrent simulation of SSAs, wind speed and wave phase velocity. The simulation results were evaluated against in-situ and lidar measurements at 2 stations in Greece (Finokalia on 4 and 15 July 2014 and Antikythera-PANGEA on 15 September 2018). The results reveal significant differences between the parameterizations with the new one offering a more realistic representation of SSA levels in some layers of the lower atmosphere. This is attributed to the enhancement of the bubble-bursting mechanism representation with air-sea processes controlling whitecap fraction. Our findings also highlight the contribution of fresh wind-generated waves to SSA modeling.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...