ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (3)
  • 1
    Publication Date: 2018-12-06
    Description: Compressive sensing is a very attractive technique to detect weak signals in a noisy background, and to overcome limitations from traditional Nyquist sampling. A very important part of this approach is the measurement matrix and how it relates to hardware implementation. However, reconstruction accuracy, resistance to noise and construction time are still open challenges. To address these problems, we propose a measurement matrix based on a cyclic direct product and QR decomposition (the product of an orthogonal matrix Q and an upper triangular matrix R). Using the definition and properties of a direct product, a set of high-dimensional orthogonal column vectors is first established by a finite number of cyclic direct product operations on low-dimension orthogonal “seed” vectors, followed by QR decomposition to yield the orthogonal matrix, whose corresponding rows are selected to form the measurement matrix. We demonstrate this approach with simulations and field measurements of a scaled submarine in a freshwater lake, at frequencies of 40 kHz–80 kHz. The results clearly show the advantage of this method in terms of reconstruction accuracy, signal-to-noise ratio (SNR) enhancement, and construction time, by comparison with Gaussian matrix, Bernoulli matrix, partial Hadamard matrix and Toeplitz matrix. In particular, for weak signals with an SNR less than 0 dB, this method still achieves an SNR increase using less data.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-29
    Description: Compressive sensing can guarantee the recovery accuracy of suitably constrained signals by using sampling rates much lower than the Nyquist limit. This is a leap from signal sampling to information sampling. The measurement matrix is key to implementation but limited in the acquisition systems. This article presents the critical elements of the direct under-sampling—compressive sensing (DUS–CS) method, constructing the under-sampling measurement matrix, combined with a priori information sparse representation and reconstruction, and we show how it can be physically implemented using dedicated hardware. To go beyond the Nyquist constraints, we show how to design and adjust the sampling time of the A/D circuit and how to achieve low-speed random non-uniform direct under-sampling. We applied our method to data measured with different compression ratios (volume ratios of collected data to original data). It is shown that DUS-CS works well when the SNR is 3 dB, 0 dB, −3 dB, and −5 dB and the compression ratio is 50%, 20%, and 10%, and this is validated with both simulation and actual measurements. The method we propose provides an effective way for compressed sensing theory to move toward practical field applications that use underwater echo signals.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-23
    Description: In this work, multibeam echosounder (MBES) and dual frequency sidescan sonar (SSS) data are combined to map the shallow (5–100 m) benthic habitats of the National Marine Park of Zakynthos (NMPZ), Greece, a Marine Protected Area (MPA). NMPZ hosts extensive prairies of the protected Mediterranean phanerogams Posidonia oceanica and Cymodocea nodosa, as well as reefs and sandbanks. Seafloor characterization is achieved using the multi-frequency acoustic backscatter of: (a) the two simultaneous frequencies of the SSS (100 and 400 kHz) and (b) the MBES (180 kHz), as well as the MBES bathymetry. Overall, these high-resolution datasets cover an area of 84 km2 with ground coverage varying from 50% to 100%. Image texture, terrain and backscatter angular response analyses are applied to the above, to extract a range of statistical features. Those have different spatial densities and so they are combined through an object-based approach based on the full-coverage 100-kHz SSS mosaic. Supervised classification is applied to data models composed of operationally meaningful combinations between the above features, reflecting single-sonar or multi-sonar mapping scenarios. Classification results are validated against a detailed expert interpretation habitat map making use of extensive ground-truth data. The relative gain of one system or one feature extraction method or another are thoroughly examined. The frequency-dependent separation of benthic habitats showcases the potentials of multi-frequency backscatter and bathymetry from different sonars, improving evidence-based interpretations of shallow benthic habitats.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...