ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ELSEVIER SCIENCE BV  (5)
  • Molecular Diversity Preservation International  (5)
  • 1
    Publication Date: 2019-06-17
    Description: Phytoplankton productivity and community structure in the East China Sea (ECS) play an important role in marine ecology and carbon cycle, but both have been changing rapidly in response to recent oceanic and atmospheric circulation changes. However, the lack of long-term records of phytoplankton productivity and community structure variability in the region hinders our understanding of natural forcing mechanisms. Here, we use the phytoplankton biomarker (brassicasterol, dinosterol and alkenones) contents as well as the ratios between these biomarkers in three sediment cores from the ECS shelf to reconstruct the spatiotemporal variations of productivity and community of diatoms, dinoflagellates and coccolithophores during the Holocene, respectively. During 9–7 ka, the ECS shelf was characterized by low phytoplankton productivity with low coccolithophore contribution, caused by the oligotrophic condition mainly owing to the restricted Kuroshio Current (KC) intrusion under low sea-level conditions, thus the lack of nutrient input. Phytoplankton productivity generally increased during 7–4.6 ka, in response to the initial intrusion of the Yellow Sea Warm Current (YSWC, a branch of the KC), bringing nutrient from the subsurface KC to the upper layer of the ECS for phytoplankton growth. Phytoplankton productivity continuously increased during 4.6–1 ka, due to an enhanced circulation system (YSWC and Yellow Sea Coastal Current (YSCC)) driven by strong East Asia Winter Monsoon (EAWM). Significantly, high alkenone contents and coccolithophore contribution in the eastern core F11A was associated with its location closer to the warm and saline YSWC, which was suitable for coccolithophore growth. Beyond diagenetic processes which could partly account for higher biomarker contents near core tops, elevated phytoplankton productivity during the last 1 ka might be induced by more nutrient supply from the intensified circulation system driven by enhanced KC and anthropogenic activities. The latter also resulted in high dinoflagellate proportions in all three cores. These temporal and spatial changes of phytoplankton productivity and community structure in the ECS during the Holocene corresponded to different mechanisms by the air-sea interaction, providing insights into distinguishing natural forcing and anthropogenic influences on marine ecology.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-02
    Description: In this study, organic geochemical analyses of two sediment cores (BL16 and LV63–23) recovered from the western Bering Sea were carried out to examine the sea-ice variability and its relationship to phytoplankton community evolution over the past century. Bulk stable organic carbon isotopic composition (δ13CTOC) showed pronounced depletion on the northern shelf since the late 1970s, indicating greater terrigenous organic matter (OM) under warming during recent decades. Variation in sedimentary OM in the southward core was closely associated with marine primary productivity and regional deposition processes. Arctic sea-ice proxy IP25 throughout the two cores with different temporal profile patterns demonstrated sea-ice presence with the spatiotemporal variability across the study area over the past century. The phytoplankton marker-IP25 index (PIP25), a proxy for estimating semi-quantitatively sea-ice concentrations, reflected a decreased sea-ice cover with more distinct interannual fluctuations between 0.7 and 0.2 (especially in core BL16) after the late 1970s, coinciding with the recent warming scenario. Increased concentrations of phytoplankton biomarkers (brassicasterol and dinosterol) and their ratios as well as the PIP25 record in core BL16 indicated a synchronous variability of reduced sea-ice cover with the enhancement of phytoplankton productivity since the late 1970s. These results suggested a coupled interaction of the sea-ice condition and planktonic ecosystem in the north Bering shelf. Our results also revealed recent (since the 2000s) spatial heterogeneity in sea-ice coverage between the northern and southern parts of the Bering Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-06
    Description: Millennial scale variations of terrigenous provenance in marine realm are closely related to regional environment and climate changes. Therefore, a wealth of information of past environment and climate can be constrained via fingerprinting sediment provenance. The Sea of Japan is a unique marginal sea in the North Pacific due to its high sill and distinct thermohaline circulation. The modern hydrography in the Sea of Japan is mainly affected by the East Asian Monsoon and Tsushima Warm Current, one branch of the Kuroshio Current. The Sea of Japan communicates with neighboring seas through four shallow and narrow straits, indicating great effects of global eustatic sea level change on its environment over glacial-interglacial cycles. Here we examine the terrigenous provenance in fine-grained fraction (〈63 μm) of core KCES1, located near one end of the Tsushima Strait of the Sea of Japan over the last 48 ka, using radiogenic isotopes of strontium (Sr) and neodymium (Nd). Our data suggest that the terrigenous provenance in core KCES1 was mainly derived from the Yangtze River after 7 ka and a mixture of Yangtze and Yellow Rivers during the last glacial and deglacial periods. Notably, pronounced negative excursions of εNd values at HS1 were attributed to minor additions of unradiogenic Nd contribution from China-Korea cratonic hinterland. A binary mixing model further reveals that 〉85% terrigenous material is derived from the Yangtze and Yellow Rivers over the last 48 ka. Moreover, abrupt variations in sediment provenance occurred at ~18 ka and ~ 7 ka, which coincide with variations in oceanic surface circulation and deep ventilation recorded in the Sea of Japan. We suggest that paleo-Tsushima Warm Current invaded into the Sea of Japan with reopening of the Tsushima Strait at HS1 and the Tsushima Warm Current substantially entered the Sea of Japan after 7 ka due to intensified Kuroshio Current and rising eustatic sea level. The inflow of Tsushima Warm Current gives rise to a range of changes in surface hydrography, deep ventilation, ecological communities and productivity and sediment texture. The combination of fluxes of paleo-rivers and the intensity of Kuroshio Current, which are closely tied to the eustatic sea level and the East Asian Monsoon, plays a key role in controlling the variations in sediment provenance in the Ulleung Basin. Our study provides unique insight into the tight coupling between changes in sediment provenance and oceanic environment over the last 48 ka in the Sea of Japan.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-10
    Description: The Kuroshio Current (KC) is the northward branch of the North Pacific subtropical gyre (NPG) and exerts influence on the exchange of physical, chemical, and biological properties of downstream regions in the Pacific Ocean. Resolving long-term changes in the flow of the KC water masses is, therefore, crucial for advancing our understanding of the Pacific's role in global ocean and climate variability. Here, we reconstruct changes in KC dynamics over the past 20 ka based on grain-size spectra, clay mineral, and Sr–Nd isotope constraints of sediments from the northern Okinawa Trough. Combined with published sediment records surrounding the NPG, we suggest that the KC remained in the Okinawa Trough throughout the Last Glacial Maximum. Together with Earth-System-Model simulations, our results additionally indicate that KC intensified considerably during the early Holocene (EH). The synchronous establishment of the KC “water barrier” and the modern circulation pattern during the EH highstand shaped the sediment transport patterns. This is ascribed to the precession-induced increase in the occurrence of La Niña-like state and the strength of the East Asian summer monsoon. The synchronicity of the shifts in the intensity of the KC, Kuroshio extension, and El Niño/La Niña-Southern Oscillation (ENSO) variability may further indicate that the western branch of the NPG has been subject to basin-scale changes in wind stress curl over the North Pacific in response to low-latitude insolation. Superimposed on this long-term trend are high-amplitude, large century, and millennial-scale variations during last 5 ka, which are ascribed to the advent of modern ENSO when the equatorial oceans experienced stronger insolation during the boreal winter.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Earth and Planetary Science Letters, ELSEVIER SCIENCE BV, 438, pp. 122-129, ISSN: 0012-821X
    Publication Date: 2016-02-15
    Description: Major shifts in ocean circulation are thought to be responsible for abrupt changes in temperature and atmospheric CO2 during the last deglaciation, linked to variability in meridional heat transport and deep ocean carbon storage. There is also widespread evidence for shifts in biological production during these times of deglacial CO2 rise, including enhanced diatom production in regions such as the tropical Atlantic. However, it remains unclear as to whether this diatom production was driven by enhanced wind-driven upwelling or density-driven vertical mixing, or by elevated thermocline concentrations of silicic acid supplied to the surface at a constant rate. Here, we demonstrate that silicic acid supply at depth in the NE Atlantic was enhanced during the abrupt climate events of the deglaciation. We use marine sediment archives to show that an increase in diatom production during abrupt climate shifts could only occur in regions of the NE Atlantic where the deep supply of silicic acid could reach the surface. The associated changes are indicative of enhanced regional wind-driven upwelling and/or weakened stratification due to circulation changes during phases of weakened Atlantic meridional overturning. Globally near-synchronous pulses of diatom production and enhanced thermocline concentrations of silicic acid suggest that widespread deglacial surface-driven breakdown of stratification, linked to changes in atmospheric circulation, had major consequences for biological productivity and carbon cycling.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2011-12-19
    Electronic ISSN: 1420-3049
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-10
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-10-01
    Description: The pore structure of rocks can affect fluid migration and the remaining hydrocarbon distribution. To understand the impacts of the base-level cycle on the pore structure of mouth bar sand bodies in a continental rift lacustrine basin, the pore structure of the mouth bar sand bodies in the ZVC (ZV4 + ZV5) of the Guan195 area was studied using pressure-controlled mercury injection (PMI), casting sheet image and scanning electron microscopy (SEM). The results show that three types of pores exist in ZVC, including intergranular pores, dissolution pores, and micro fractures. The porosity is generally between 1.57% and 44.6%, with a mean value of 19.05%. The permeability is between 0.06 μm2 and 3611 μm2, with a mean value of 137.56 μm2. The pore structure heterogeneity of a single mouth bar sand body in the early stage of the falling period of short-term base-level is stronger than that in the late stage. During the falling process of the middle-term base level, the pore structure heterogeneity of a late single mouth bar sand body is weaker than that of an early single mouth bar sand body. In the long-term base-level cycle, the pore structure heterogeneity of mouth bar sand bodies becomes weaker with the falling of the base-level.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-27
    Description: In this work, we present a battery-less wireless Micro-Electro-Mechanical (MEMS)-based respiration sensor capable of measuring the respiration profile of a human subject from up to 2 m distance from the transceiver unit for a mean excitation power of 80 µW and a measured SNR of 124.8 dB at 0.5 m measurement distance. The sensor with a footprint of ~10 cm2 is designed to be inexpensive, maximize user mobility, and cater to applications where disposability is desirable to minimize the sanitation burden. The sensing system is composed of a custom UHF RFID antenna, a low-loss piezoelectric MEMS resonator with two modes within the frequency range of interest, and a base transceiver unit. The difference in temperature and moisture content of inhaled and exhaled air modulates the resonance frequency of the MEMS resonator which in turn is used to monitor respiration. To detect changes in the resonance frequency of the MEMS devices, the sensor is excited by a pulsed sinusoidal signal received through an external antenna directly coupled to the device. The signal reflected from the device through the antenna is then analyzed via Fast Fourier Transform (FFT) to extract and monitor the resonance frequency of the resonator. By tracking the resonance frequency over time, the respiration profile of a patient is tracked. A compensation method for the removal of motion-induced artifacts and drift is proposed and implemented using the difference in the resonance frequency of two resonance modes of the same resonator.
    Electronic ISSN: 2072-666X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...