ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 403 (2000), S. 57-59 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested to make up much of the ‘dark matter’ in the halo of the Milky Way. But extremely cool white dwarfs have proved ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-10-23
    Description: The crystal structure of the fibrous mineral arangasite, Al 2 F(PO 4 )(SO 4 )·9H 2 O from the Alyaskitovoje deposit, Eastern Yakutiya, Russia, was solved using low-temperature single-crystal data from synchrotron radiation and refined against F 2 to R = 9.8%. Arangasite crystallizes in the monoclinic space group P 2/ a , with unit-cell parameters a = 7.073(1), b = 9.634(2), c = 10.827(2) Å, β = 100.40(1)°, V = 725.7(7) Å 3 and Z = 2. The positions of all the independent H atoms were obtained by difference-Fourier techniques and refined in an isotropic approximation. The arangasite crystal structure is built from one-dimensional chains of Al octahedra and PO 4 tetrahedra sharing vertices, quasi-isolated SO 4 tetrahedra and H 2 O molecules. All O atoms are involved in the system of H bonding, acting as donors and/or acceptors. Hydrogen bonding serves as the only mechanism providing linkage between the main structural fragments, thus maintaining the framework. Chains of corner-sharing Al octahedra and P tetrahedra in the arangasite structure are topologically identical to the chains built from (Fe, Al) octahedra and P tetrahedra in the crystal structure of destinezite, Fe 2 (OH)(PO 4 )(SO 4 )·6H 2 O. It has been shown that in spite of very similar chemical formulae, arangasite and sanjuanite, Al 2 (OH)(PO 4 )(SO 4 )·9H 2 O, are not isotypic.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-08
    Description: Type specimens of the molybdoarsenates betpakdalite, natrobetpakdalite and obradovicite and the molybdophosphates mendozavilite, paramendozavilite and melkovite, and similar material from other sources, have been examined in an effort to elucidate the relations among these phases, which we designate as the heteropolymolybdate family of minerals. Using electron microprobe analysis, X-ray powder diffraction and single-crystal X-ray diffraction with crystal structure determination where possible, it was found that natrobetpakdalite, mendozavilite and melkovite are isostructural with betpakdalite and that obradovicite has a closely related structure.The betpakdalite and obradovicite structure types are based on frameworks containing four-member clusters of edge-sharing MoO6 octahedra that link by sharing corners with other clusters, with Fe3+O6 octahedra and with PO4 or AsO4 tetrahedra (T). The structures differ in the linkages through the Fe3+O6 octahedra, which produce different but closely related framework configurations. The structures contain two types of non-framework cation sites, which are designated A and B. In general, there are two or more A sites partially occupied by disordered, generally larger cations that are coordinated to O atoms in the framework and to H2O molecules. The B site is occupied by a smaller cation that is octahedrally coordinated to H2O molecules. The general formula for minerals with either the betpakdalite or the obradovicite structure is: [A2(H2O)nB(H2O)6][Mo8T2 O30+7(OH)7–x], where x is the total charge of the cations in the A and B sites (+3 to +7) and n is variable, ideally 17 for arsenates and 15 for phosphates. The ideal total number of A cations is defined as 2 in the general formula, but varies from 1 to 3.8 in analysed samples. Dominant cations at the A site include K, Na and Ca and at the B site Na, Ca, Mg, Cu and Fe. The combinations that have been identified in this study define six new heteropolymolybdate species.A suffix-based nomenclature scheme is established for minerals of the betpakdalite, mendozavilite and obradovicite groups, with the following root names based on the structure types and the T-site cations: betpakdalite (T = As), mendozavilite (T = P) and obradovicite (T = As). Two suffixes of the form -AB, corresponding to the dominant cations in the two different types of non-framework cation sites complete the species name. The historical name melkovite is retained rather than introducing mendozavilite-CaCa.Our investigation of the paramendozavilite type specimen revealed no paramendozavilite, but an apparently closely related new mineral; however, another sample of paramendozavilite analysed had K 〉 Na.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-06
    Description: Leószilárdite (IMA2015-128), Na 6 Mg(UO 2 ) 2 (CO 3 ) 6 ·6H 2 O, was found in the Markey Mine, Red Canyon, White Canyon District, San Juan County, Utah, USA, in areas with abundant andersonite, natrozippeite, gypsum, anhydrite, and probable hydromagnesite along with other secondary uranium minerals bayleyite, čejkaite and johannite. The new mineral occurs as aggregates of pale yellow bladed crystals flattened on {001} and elongated along [010], individually reaching up to 0.2 mm long. More commonly it occurs as pale yellow pearlescent masses to 2 mm consisting of very small plates. Leószilárdite fluoresces green under both longwave and shortwave ultraviolet light, and is translucent with a white streak, hardness of 2 (Mohs), and brittle tenacity with uneven fracture. The new mineral is readily soluble in room temperature H 2 O. Crystals have perfect cleavage along {001}, and exhibit the forms {110}, {001}, {100}, {101} and { 1 01}. Optically, leószilárdite is biaxial (–), α = 1.504(1), β = 1.597(1), = 1.628(1) (white light); 2V (meas.) = 57(1)°, 2V (calc.) = 57.1°; dispersion r 〉 v , slight. Pleochroism: X = colourless, Y and Z = light yellow; X 〈 Y Z . The average of six wavelength dispersive spectroscopic analyses provided Na 2 O 14.54, MgO 3.05, UO 3 47.95, CO 2 22.13, H 2 O 9.51, total 97.18 wt.%. The empirical formula is Na 5.60 Mg 0.90 U 2 O 28 C 6 H 12.60 , based on 28 O apfu. Leószilárdite is monoclinic, C 2 /m , a = 11.6093(21), b = 6.7843(13), c = 15.1058(28) Å, β = 91.378(3)°, V = 1189.4(4) Å 3 and Z = 2. The crystal structure ( R 1 = 0.0387 for 1394 reflections with I obs 〉 4 I ), consists of uranyl tricarbonate anion clusters [(UO 2 )(CO 3 ) 3 ] 4– held together in part by irregular chains of NaO 5 (H 2 O) polyhedra sub parallel to [010]. Individual uranyl tricarbonate clusters are also linked together by three-octahedron units consisting of two Na-centred octahedra that share the opposite faces of a Mg-centred octahedron at the centre (Na–Mg–Na), and have the composition Na 2 MgO 12 (H 2 O) 4 . The name of the new mineral honours the Hungarian-American physicist, inventor and biologist Dr. Leó Szilárd (1898–1964).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-28
    Description: Leószilárdite (IMA2015-128), Na 6 Mg(UO 2 ) 2 (CO 3 ) 6 ·6H 2 O, was found in the Markey Mine, Red Canyon, White Canyon District, San Juan County, Utah, USA, in areas with abundant andersonite, natrozippeite, gypsum, anhydrite, and probable hydromagnesite along with other secondary uranium minerals bayleyite, čejkaite and johannite. The new mineral occurs as aggregates of pale yellow bladed crystals flattened on {001} and elongated along [010], individually reaching up to 0.2 mm long. More commonly it occurs as pale yellow pearlescent masses to 2 mm consisting of very small plates. Leószilárdite fluoresces green under both longwave and shortwave ultraviolet light, and is translucent with a white streak, hardness of 2 (Mohs), and brittle tenacity with uneven fracture. The new mineral is readily soluble in room temperature H 2 O. Crystals have perfect cleavage along {001}, and exhibit the forms {110}, {001}, {100}, {101} and { 1 01}. Optically, leószilárdite is biaxial (–), α = 1.504(1), β = 1.597(1), = 1.628(1) (white light); 2V (meas.) = 57(1)°, 2V (calc.) = 57.1°; dispersion r 〉 v , slight. Pleochroism: X = colourless, Y and Z = light yellow; X 〈 Y Z . The average of six wavelength dispersive spectroscopic analyses provided Na 2 O 14.54, MgO 3.05, UO 3 47.95, CO 2 22.13, H 2 O 9.51, total 97.18 wt.%. The empirical formula is Na 5.60 Mg 0.90 U 2 O 28 C 6 H 12.60 , based on 28 O apfu. Leószilárdite is monoclinic, C 2 /m , a = 11.6093(21), b = 6.7843(13), c = 15.1058(28) Å, β = 91.378(3)°, V = 1189.4(4) Å 3 and Z = 2. The crystal structure ( R 1 = 0.0387 for 1394 reflections with I obs 〉 4 I ), consists of uranyl tricarbonate anion clusters [(UO 2 )(CO 3 ) 3 ] 4– held together in part by irregular chains of NaO 5 (H 2 O) polyhedra sub parallel to [010]. Individual uranyl tricarbonate clusters are also linked together by three-octahedron units consisting of two Na-centred octahedra that share the opposite faces of a Mg-centred octahedron at the centre (Na–Mg–Na), and have the composition Na 2 MgO 12 (H 2 O) 4 . The name of the new mineral honours the Hungarian-American physicist, inventor and biologist Dr. Leó Szilárd (1898–1964).
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-01
    Description: Type specimens of the molybdoarsenates betpakdalite, natrobetpakdalite and obradovicite and the molybdophosphates mendozavilite, paramendozavilite and melkovite, and similar material from other sources, have been examined in an effort to elucidate the relations among these phases, which we designate as the heteropolymolybdate family of minerals. Using electron microprobe analysis, X-ray powder diffraction and single-crystal X-ray diffraction with crystal structure determination where possible, it was found that natrobetpakdalite, mendozavilite and melkovite are isostructural with betpakdalite and that obradovicite has a closely related structure.The betpakdalite and obradovicite structure types are based on frameworks containing four-member clusters of edge-sharing MoO6 octahedra that link by sharing corners with other clusters, with Fe3+O6 octahedra and with PO4 or AsO4 tetrahedra (T). The structures differ in the linkages through the Fe3+O6 octahedra, which produce different but closely related framework configurations. The structures contain two types of non-framework cation sites, which are designated A and B. In general, there are two or more A sites partially occupied by disordered, generally larger cations that are coordinated to O atoms in the framework and to H2O molecules. The B site is occupied by a smaller cation that is octahedrally coordinated to H2O molecules. The general formula for minerals with either the betpakdalite or the obradovicite structure is: [A2(H2O)nB(H2O)6][Mo8T2 O30+7(OH)7–x], where x is the total charge of the cations in the A and B sites (+3 to +7) and n is variable, ideally 17 for arsenates and 15 for phosphates. The ideal total number of A cations is defined as 2 in the general formula, but varies from 1 to 3.8 in analysed samples. Dominant cations at the A site include K, Na and Ca and at the B site Na, Ca, Mg, Cu and Fe. The combinations that have been identified in this study define six new heteropolymolybdate species.A suffix-based nomenclature scheme is established for minerals of the betpakdalite, mendozavilite and obradovicite groups, with the following root names based on the structure types and the T-site cations: betpakdalite (T = As), mendozavilite (T = P) and obradovicite (T = As). Two suffixes of the form -AB, corresponding to the dominant cations in the two different types of non-framework cation sites complete the species name. The historical name melkovite is retained rather than introducing mendozavilite-CaCa.Our investigation of the paramendozavilite type specimen revealed no paramendozavilite, but an apparently closely related new mineral; however, another sample of paramendozavilite analysed had K 〉 Na.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-01
    Description: The crystal structure of the fibrous mineral arangasite, Al2F(PO4)(SO4)·9H2O from the Alyaskitovoje deposit, Eastern Yakutiya, Russia, was solved using low-temperature single-crystal data from synchrotron radiation and refined against F2 to R = 9.8%. Arangasite crystallizes in the monoclinic space group P2/a, with unit-cell parameters a = 7.073(1), b = 9.634(2), c = 10.827(2) Å, β = 100.40(1)°, V = 725.7(7) Å3 and Z = 2. The positions of all the independent H atoms were obtained by difference- Fourier techniques and refined in an isotropic approximation. The arangasite crystal structure is built from one-dimensional chains of Al octahedra and PO4 tetrahedra sharing vertices, quasi-isolated SO4 tetrahedra and H2O molecules. All O atoms are involved in the system of H bonding, acting as donors and/or acceptors. Hydrogen bonding serves as the only mechanism providing linkage between the main structural fragments, thus maintaining the framework. Chains of corner-sharing Al octahedra and P tetrahedra in the arangasite structure are topologically identical to the chains built from (Fe, Al) octahedra and P tetrahedra in the crystal structure of destinezite, Fe2(OH)(PO4)(SO4)·6H2O. It has been shown that in spite of very similar chemical formulae, arangasite and sanjuanite, Al2(OH)(PO4)(SO4)·9H2O, are not isotypic.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-06-01
    Description: Bendadaite, ideally Fe2+Fe23+(AsO4)2(OH)2·4H2O, is a new member of the arthurite group. It was found as a weathering product of arsenopyrite on a single hand specimen from the phosphate pegmatite Bendada, central Portugal (type locality). Co-type locality is the granite pegmatite of Lavra do Almerindo (Almerindo mine), Linópolis, Divino das Laranjeiras county, Minas Gerais, Brazil. Further localities are the Veta Negra mine, Copiapó province, Chile; Oumlil-East, Bou Azzer district, Morocco; and Pira Inferida yard, Fenugu Sibiri mine, Gonnosfanadiga, Medio Campidano Province, Sardinia, Italy.Type bendadaite occurs as blackish green to dark brownish tufts (Y〉X, optical dispersion weak,r〉v. Optical axis plane is parallel to (010), withXapproximately parallel toaandZnearly parallel to c. Bendadaite has vitreous to sub-adamantine luster, is translucent and non-fluorescent. It is brittle, shows irregular fracture and a good cleavage parallel to {010}. Dmeas.3.15±0.10 g/cm3, Dcalc.3.193 g/cm3(for the empirical formula). The five strongest powder diffraction lines [din Å (I)(hkl)] are 10.22 (10)(100), 7.036 (8)(110), 4.250 (5)(111), 2.865 (4)(), 4.833 (3)(020,011). Thedspacings are very similar to those of its Zn analogue, ojuelaite. The crystal structure of bendadaite was solved and refined using a crystal from the co-type locality with the composition (Fe2+0.95☐0.05)Σ1.00(Fe3+1.80Al0.20)Σ2.00(As1.48P0.52)Σ2.00O8(OH)2·4H2O (R= 1.6%), and confirms an arthurite-type atomic arrangement.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2000-02-01
    Description: The crystal structure of chenevixite, Cu2M2(AsO4)2(OH)4 (where M = Fe3+ or Al), pseudo-orthorhombic, monoclinic, a = 5.7012(8), b = 5.1801(7), c = 29.265(2) Å, β = 89.99(1)°, V = 864.3(4) Å3, space group B1211, Z = 4, was solved by direct methods and refined by least-squares techniques to R = 8.4% and a goodness-of-fit (S) of 1.37 for 1176 unique observed (F≥4σF) reflections collected for a twinned microcrystal using graphite-monochromated Mo-Kα X-rays and a CCD area detector. Vertex- and edge-sharing arsenate tetrahedra, Alϕ6 octahedra, and Jahn-Teller-distorted Cu2+ϕ6 octahedra [ϕ: O2−;, (OH)−;] form a framework unique from those in Cu2+ oxysalt minerals. Chains of edge-sharing Cu2+ϕ6 octahedra, with Alϕ6 octahedra attached on opposing sides by the sharing of edges, are linked into layers parallel to (001) by sharing vertices with AsO4 tetrahedra, and the layers are linked to form a frameworkby the sharing of polyhedral elements between adjacent Alϕ6 octahedra, as well as between AsO4 tetrahedra and Alϕ6 octahedra.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1999-01-01
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...