ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-15
    Description: The influence of individual clay minerals on formation damage of reservoir sandstones is reviewed, mainly through the mechanism of fine particle dispersion and migration leading to the accumulation and blockage of pore throats and significant reduction of permeability. The minerals discussed belong to the smectite, kaolinite, illite and chlorite groups respectively. These minerals usually occur in an aggregate form in reservoir sandstones and the physicochemical properties of these aggregates are reviewed in order to reach a better understanding of the factors that lead to their dispersion in aqueous pore fluids. Particularly significant properties include the surface charge on both basal and edge faces of the clay minerals and how this varies with pH, external surface area of both swelling and non-swelling clays, porosity and pore size distribution in the micro- and meso-pore size range and overall aggregate morphology. For non-swelling clays, and perhaps even for swelling clays, dispersion is thought to be initiated at the micro- or meso-pore level, where the interaction between the pore solution and the charged clay surfaces exposed on adjacent sides of slit- or wedge-shaped pores brings about expansion of the diffuse double electric layer (DDL) and an increase in hydration pressure. Such expansion occurs only in dilute electrolyte solutions in contrast to the effect of concentrated solutions which would shrink the thickness of the DDL and so inhibit dispersion. Stable dispersions are formed, particularly where the solution pH exceeds the isoelectric pH of the mineral, which is often at alkali pH values, so that both basal face and edge surfaces are negatively charged and the particles repel each other. The osmotic swelling of smectitic clays to a gel-like form, so effectively blocking pores in situ , is often invoked as an explanation of formation damage in reservoir sandstones. Such swelling certainly occurs in dilute aqueous solutions under earth surface conditions but it is uncertain that stable smectitic gels could form at the temperatures and pressures associated with deeply buried reservoir sandstones.
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Mineralogical Society of Great Britain and Ireland
    Publication Date: 2014-05-15
    Description: The instability of shales in drilled formations leads to serious operational problems with major economic consequences for petroleum exploration and production. It is generally agreed that the nature of the clay minerals in shale formations is a primary causative factor leading to their instability, although the exact mechanism involved is more debateable. Currently, the principal cause of shale instability is considered to be volume expansion following the osmotic swelling of Na-smectite. However, illitic and kaolinitic shales may also be unstable, so that interlayer expansion cannot therefore be considered as a universal causative mechanism of shale instability. This review considers alternative scenarios of shale instability where the major clay minerals are smectite, illite, mixed-layer illite-smectite (I/S) and kaolinite respectively. The influence of interacting factors that relate to shale clay mineralogy such as texture, structure and fabric are discussed, as are the pore size distribution and the nature of water in clays and shales and how these change with increasing depth of burial. It is found from the literature that the thickness of the diffuse double layer (DDL) of the aqueous solutions associated with the charged external surfaces of clay minerals is probably of the same order or even thicker than the sizes of a significant proportion of the pores found in shales. In these circumstances, overlap of the DDLs associated with exposed outer surfaces of clay minerals on opposing sides of micropores (〈2 nm in diameter) and mesopores (2–50 nm in diameter) in a lithostatically compressed shale would bring about electrostatic repulsion and lead to increased pore/hydration pressure in smectitic, illitic and even kaolinitic shales. This pressure would be inhibited by the use of more concentrated K-based fluids which effectively shrink the thickness of the DDL towards the clay mineral surfaces in the pore walls. The use of soluble polymers would also encapsulate these clay mineral surfaces and so inhibit their hydration. In this scenario, the locus of action with respect to shale instability and its inhibition is moved from the interlamellar space of the smectitic clays to the charged external surfaces of the various clay minerals bounding the walls of the shale pores.
    Print ISSN: 0009-8558
    Electronic ISSN: 1471-8030
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1974-06-03
    Description: An integral analysis of the type used to predict the flow of co-flowing jets has been applied to the problem of a sudden enlargement in a pipe (Borda–Carnot expansion). This technique successfully predicts all the overall flow parameters of interest (e.g. reattachment lengths, pressure profile, etc.). The analysis indicates that the downstream conditions (up to reattachment) are insensitive to wall shear and the point of minimum pressure does not coincide with the location of the maximum return-flow velocity. © 1974, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-04-25
    Description: A model is presented for viscous flow in a cylindrical cavity (a half-filled annulus lying between horizontal, infinitely long concentric cylinders of radii Ki,Ro rotating with peripheral speeds Ui,Uo). Stokes' approximation is used to formulate a boundary value problem which is solved for the streamfunction, ψ, as a function of radius ratio R = Ri/Ro and speed ratio S = Ui/Uo. Results show that for S 〉 0 (S 〈 0) the flow domain consists of two (one) large eddies (eddy), each having a stagnation point on the centreline and a potentially rich substructure with separatrices and sub-eddies. The behaviour of the streamfunction solution in the neighbourhood of stagnation points on the centreline is investigated by means of a truncated Taylor expansion. As R and S are varied it is shown that a bifurcation in the flow structure arises in which a centre becomes a saddle stagnation point and vice versa. As R → 1, a sequence of 'flow bifurcations' leads to a flow structure consisting of a set of nested separatrices, and provides the means by which the two-dimensional cavity flow approaches quasi-unidirectional flow in the small gaP limit. Control-space diagrams reveal that speed ratio has little effect on the flow structure when S 〈 0 and also when S 〉 0 and aspect ratios are small (except near S = 1). For S 〉 0 and moderate to large aspect ratios the bifurcation characteristics of the two large eddies are quite different and depend on both R and S.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-06-25
    Description: A range of two- and three-dimensional problems is explored featuring the gravity-driven flow of a continuous thin liquid film over a non-porous inclined flat surface containing well-defined topography. These are analysed principally within the framework of the lubrication approximation, where accurate numerical solution of the governing nonlinear equations is achieved using an efficient multigrid solver. Results for flow over one-dimensional steep-sided topographies are shown to be in very good agreement with previously reported data. The accuracy of the lubrication approximation in the context of such topographies is assessed and quantified by comparison with finite element solutions of the full Navier-Stokes equations, and results support the consensus that lubrication theory provides an accurate description of these flows even when its inherent assumptions are not strictly satisfied. The Navier-Stokes solutions also illustrate the effect of inertia on the capillary ridge/trough and the two-dimensional flow structures caused by steep topography. Solutions obtained for flow over localized topography are shown to be in excellent agreement with the recent experimental results of Decré & Baret (2003) for the motion of thin water films over finite trenches. The spread of the 'bow wave', as measured by the positions of spanwise local extrema in free-surface height, is shown to be well-represented both upstream and downstream of the topography by an inverse hyperbolic cosine function. An explanation, in terms of local flow rate, is given for the presence of the 'downstream surge' following square trenches, and its evolution as trench aspect ratio is increased is discussed. Unlike the upstream capillary ridge, this feature cannot be completely suppressed by increasing the normal component of gravity. The linearity of free-surface response to topographies is explored by superposition of the free surfaces corresponding to two 'equal-but-opposite' topographies. Results confirm the findings of Decré & Baret (2003) that, under the conditions considered, the responses behave in a near-linear fashion. © 2004 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1978-06-01
    Description: SummaryHydrothermal ruffles from a suite of rocks at Mount Perry, Queensland, have been studied in thin section, by electron microprobe analysis, and by transmission electron microscopy. The iron-bearing rutiles, while originally singte-phase, are found to exsolve a sequence of iron-rich precipitates on experimental annealing, with hematite being formed as the stable equilibrium precipitate. Experiments at different temperatures and annealing times enable a time-temperature-transformation plot to be drawn for the exsolution process. The kinetics of this process are used to conclude that the rutiles formed below about 450 °C.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1974-03-01
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1983-03-01
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1986-06-01
    Description: Spheniscidite is a new phosphate mineral occurring in a soil profile in an area of nesting penguins on Elephant Island. It is the NH4-dominant analogue of leucophosphite and has the formula (NH4,K)(Fe3+,Al)2 (PO4)2(OH) · 2H2O. It is monoclinic, P21/n with unit cell parameters a = 9.75, b = 9.63, c = 9.70 Å, β = 102° 34′, and Z = 4. The strongest X-ray lines are 6.79(100), 5.99(90), 3.05(45), 7.62(40) Å. Spheniscidite is thought to have formed by the interaction of ammonium phosphate solutions from penguin guano with micaceous and chloritic minerals in the soil. The name is for Sphenisciformes, the order name for penguins, and has been approved by the IMA Commission on New Minerals and Mineral Names.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1978-06-01
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...