ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • MDPI Publishing  (2)
  • American Association for the Advancement of Science  (1)
  • 1
    Publikationsdatum: 2014-11-04
    Beschreibung: In this paper, an adaptive activity and environment recognition algorithm running on a mobile phone is presented. The algorithm makes inferences based on sensor and radio receiver data provided by the phone. A wide set of features that can be extracted from these data sources were investigated, and a Bayesian maximum a posteriori classifier was used for classifying between several user activities and environments. The accuracy of the method was evaluated on a dataset collected in a real-life trial. In addition, comparison to other state-of-the-art classifiers, namely support vector machines and decision trees, was performed. To make the system adaptive for individual user characteristics, an adaptation algorithm for context model parameters was designed. Moreover, a confidence measure for the classification correctness was designed. The proposed adaptation algorithm and confidence measure were evaluated on a second dataset obtained from another real-life trial, where the users were requested to provide binary feedback on the classification correctness. The results show that the proposed adaptation algorithm is effective at improving the classification accuracy.
    Digitale ISSN: 1424-8220
    Thema: Chemie und Pharmazie , Elektrotechnik, Elektronik, Nachrichtentechnik
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2018-04-26
    Beschreibung: Entropy, Vol. 20, Pages 311: Network Entropy for the Sequence Analysis of Functional Connectivity Graphs of the Brain Entropy doi: 10.3390/e20050311 Authors: Chi Zhang Fengyu Cong Tuomo Kujala Wenya Liu Jia Liu Tiina Parviainen Tapani Ristaniemi Dynamic representation of functional brain networks involved in the sequence analysis of functional connectivity graphs of the brain (FCGB) gains advances in uncovering evolved interaction mechanisms. However, most of the networks, even the event-related ones, are highly heterogeneous due to spurious interactions, which bring challenges to revealing the change patterns of interactive information in the complex dynamic process. In this paper, we propose a network entropy (NE) method to measure connectivity uncertainty of FCGB sequences to alleviate the spurious interaction problem in dynamic network analysis to realize associations with different events during a complex cognitive task. The proposed dynamic analysis approach calculated the adjacency matrices from ongoing electroencephalpgram (EEG) in a sliding time-window to form the FCGB sequences. The probability distribution of Shannon entropy was replaced by the connection sequence distribution to measure the uncertainty of FCGB constituting NE. Without averaging, we used time frequency transform of the NE of FCGB sequences to analyze the event-related changes in oscillatory activity in the single-trial traces during the complex cognitive process of driving. Finally, the results of a verification experiment showed that the NE of the FCGB sequences has a certain time-locked performance for different events related to driver fatigue in a prolonged driving task. The time errors between the extracted time of high-power NE and the recorded time of event occurrence were distributed within the range [−30 s, 30 s] and 90.1% of the time errors were distributed within the range [−10 s, 10 s]. The high correlation (r = 0.99997, p < 0.001) between the timing characteristics of the two types of signals indicates that the NE can reflect the actual dynamic interaction states of brain. Thus, the method may have potential implications for cognitive studies and for the detection of physiological states.
    Digitale ISSN: 1099-4300
    Thema: Chemie und Pharmazie , Physik
    Publiziert von MDPI Publishing
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-03-05
    Print ISSN: 0036-8075
    Digitale ISSN: 1095-9203
    Thema: Biologie , Chemie und Pharmazie , Informatik , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...