ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-31
    Description: West Mata is a submarine volcano located in the SW Pacific Ocean between Fiji and Samoa in the NE Lau Basin. West Mata was discovered to be actively erupting at its summit in September 2008 and May 2009. Water-column chemistry and hydrophone data suggest it was probably continuously active until early 2011. Subsequent repeated bathymetric surveys of West Mata have shown that it changed to a style of frequent but intermittent eruptions away from the summit since then. We present new data from ship-based bathymetric surveys, high-resolution bathymetry from an autonomous underwater vehicle, and observations from remotely operated vehicle dives that document four additional eruptions between 2012 and 2018. Three of those eruptions occurred between September 2012 and March 2016; one near the summit on the upper ENE rift, a second on the NE flank away from any rift zone, and a third at the NE base of the volcano. The latter intruded a sill into a basin with thick sediments, uplifted them, and then extruded lava onto the seafloor around them. The most recent of the four eruptions occurred between March 2016 and November 2017 along the middle ENE rift zone and produced pillow lava flows with a shingled morphology and tephra as well as clastic debris that mantled the SE slope. ROV dive observations show that the shallower recent eruptions at West Mata include a substantial pyroclastic component, based on thick (〉1 m) tephra deposits near eruptive vents. The deepest eruption sites lack these near-vent tephra deposits, suggesting that pyroclastic activity is minimal below ∼2500 mbsl. The multibeam sonar re-surveys constrain the timing, thickness, area, morphology, and volume of the new eruptions. The cumulative erupted volume since 1996 suggests that eruptions at West Mata are volume-predictable with an average eruption rate of 7.8 × 106 m3/yr. This relatively low magma supply rate and the high frequency of eruptions (every 1–2 years) suggests that the magma reservoir at West Mata is relatively small. With its frequent activity, West Mata continues to be an ideal natural laboratory for the study of submarine volcanic eruptions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 12 (2013): 1609–1625, doi:10.1002/ggge.20110.
    Description: We combine high-resolution bathymetry acquired using the Autonomous Underwater Vehicle ABE with digital seafloor imagery collected using the remotely operated vehicle ROPOS across the axial valley of the Southern Explorer Ridge (SER) to infer the recent volcanic and tectonic processes. The SER is an intermediate spreading ridge located in the northeast Pacific. It hosts the Magic Mountain hydrothermal vent. We reconstruct the unfaulted seafloor terrain at SER based on calculations of the vertical displacement field and fault parameters. The vertical changes between the initial and the restored topographies reflect the integrated effects of volcanism and tectonism on relief-forming processes over the last 11,000–14,000 years. The restored topography indicates that the axial morphology evolved from a smooth constructional dome 〉500 m in diameter, to a fault-bounded graben, ~500 m wide and 30–70 m deep. This evolution has been accompanied by changes in eruptive rate, with deposition of voluminous lobate and sheet flows when the SER had a domed morphology, and limited-extent low-effusion rate pillow eruptions during graben development. Most of the faults shaping the present axial valley postdate the construction of the dome. Our study supports a model of cyclic volcanism at the SER with periods of effusive eruptions flooding the axial rift, centered on the broad plateau at the summit of the ridge, followed by a decrease in eruptive activity and a subsequent dominance of tectonic processes, with minor low-effusion rate eruptions confined to the axial graben. The asymmetric shape of the axial graben supports an increasing role of extensional processes, with a component of simple shear in the spreading processes.
    Description: Funding for the 2002 Submarine Ring of Fire expedition was from the NOAA Ocean Exploration Program and NOAA’s Pacific Marine Environmental Laboratory. This work was supported by a Woods Hole Oceanographic Institution Post-doctoral Scholarship, CNRS and Université de Bretagne Occidentale, France.
    Description: 2013-11-29
    Keywords: Mid-ocean ridge ; Lava flow ; Spreading ; Axial valley ; Explorer ridge ; Dike ; Cyclic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 4093–4115, doi:10.1002/2014GC005387.
    Description: We present multiple lines of evidence for years to decade-long changes in the location and character of volcanic activity at West Mata seamount in the NE Lau basin over a 16 year period, and a hiatus in summit eruptions from early 2011 to at least September 2012. Boninite lava and pyroclasts were observed erupting from its summit in 2009, and hydroacoustic data from a succession of hydrophones moored nearby show near-continuous eruptive activity from January 2009 to early 2011. Successive differencing of seven multibeam bathymetric surveys of the volcano made in the 1996–2012 period reveals a pattern of extended constructional volcanism on the summit and northwest flank punctuated by eruptions along the volcano's WSW rift zone (WSWRZ). Away from the summit, the volumetrically largest eruption during the observational period occurred between May 2010 and November 2011 at ∼2920 m depth near the base of the WSWRZ. The (nearly) equally long ENE rift zone did not experience any volcanic activity during the 1996–2012 period. The cessation of summit volcanism recorded on the moored hydrophone was accompanied or followed by the formation of a small summit crater and a landslide on the eastern flank. Water column sensors, analysis of gas samples in the overlying hydrothermal plume and dives with a remotely operated vehicle in September 2012 confirmed that the summit eruption had ceased. Based on the historical eruption rates calculated using the bathymetric differencing technique, the volcano could be as young as several thousand years.
    Description: Support for R.W.E. during this study was by internal NOAA funding to the NOAA Vents Program (now Earth-Ocean Interactions Program). The NSF Ridge 2000 and MARGINS programs played a major role in the planning and justification for the 2009 rapid response proposal that funded the May 2009 expedition. MBARI provided support and outstanding postprocessing of the multibeam bathymetry from the D. Allan B. AUV multibeam sonar used in this study. NSF also provided major funding for the 2009 expedition (OCE930025 and OCE-0934660 to JAR) and for the 210Po-210Pb radiometric dating (OCE-0929881 and for the 210Po-210Pb radiometric dating (OCE-0929881 to KHR)). The NOAA Office of Exploration and Research provided major funding for the 2009 and 2012 field programs.
    Description: 2015-04-30
    Keywords: Seamount ; Lau ; Volcano ; Eruption ; Submarine ; Multibeam
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...