ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-24
    Description: The upward migration of gas through marine sediments typically manifests itself as gas chimneys or pipes in seismic images and can lead to the formation of cold seeps. Gas seepage is often linked to morphological features like seabed domes, pockmarks, and carbonate build-ups. In this context, sediment doming is discussed to be a precursor of pockmark formation. Here, we present parametric echosounder, sidescan sonar, and two-dimensional seismic data from Opouawe Bank, offshore New Zealand, providing field evidence for sediment doming. Geomechanical quantification of the stresses required for doming show that the calculated gas column heights are geologically feasible and consistent with the observed geophysical data. The progression from channeled gas flow to gas trapping results in overpressure build-up in the shallow sediment. Our results suggest that by breaching of domed seafloor sediments a new seep site can develop, but contrary to ongoing discussion this does not necessarily lead to the formation of pockmarks.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-24
    Description: During opening of a new ocean magma intrudes into the surrounding sedimentary basins. Heat provided by the intrusions matures the host rock creating metamorphic aureoles potentially releasing large amounts of hydrocarbons. These hydrocarbons may migrate to the seafloor in hydrothermal vent complexes in sufficient volumes to trigger global warming, e.g. during the Paleocene Eocene Thermal Maximum (PETM). Mound structures at the top of buried hydrothermal vent complexes observed in seismic data off Norway were previously interpreted as mud volcanoes and the amount of released hydrocarbon was estimated based on this interpretation. Here, we present new geophysical and geochemical data from the Gulf of California suggesting that such mound structures could in fact be edifices constructed by the growth of black-smoker type chimneys rather than mud volcanoes. We have evidence for two buried and one active hydrothermal vent system outside the rift axis. The vent releases several hundred degrees Celsius hot fluids containing abundant methane, mid-ocean-ridge-basalt (MORB)-type helium, and precipitating solids up to 300 m high into the water column. Our observations challenge the idea that methane is emitted slowly from rift-related vents. The association of large amounts of methane with hydrothermal fluids that enter the water column at high pressure and temperature provides an efficient mechanism to transport hydrocarbons into the water column and atmosphere, lending support to the hypothesis that rapid climate change such as during the PETM can be triggered by magmatic intrusions into organic-rich sedimentary basins.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-24
    Description: Methane seepage at south Hydrate Ridge (offshore Oregon, United States), one of the best-studied examples of gas venting through gas hydrates, is the seafloor expression of a vigorous fluid flow system at depth. The seeps host chemosynthetic ecosystems and release significant amounts of carbon into the ocean. With new three-dimensional seismic data, we image strata and structures beneath the ridge in unprecedented detail to determine the geological processes controlling the style of focused fluid flow. Numerical fluid flow simulations reveal the influence of free gas within a stratigraphic unit known as Horizon A, beneath the base of gas hydrate stability (BGHS). Free gas within Horizon A increases the total mobility of the composite water-gas fluid, resulting in high fluid flux that accumulates at the intersection between Horizon A and the BGHS. This intersection controls the development of fluid overpressure at the BGHS, and together with a well-defined network of faults, reveals the link between the gas hydrate system at depth and methane seepage at the surface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The continental margin of the northern South China Sea is considered to be a magma-poor rifted margin. This work uses new seismic, bathymetric, gravity, and magnetic data to reveal how extensively magmatic processes have reshaped the latter continental margin. Widespread hydrothermal vent complexes and magmatic edifices such as volcanoes, igneous sills, lava flows, and associated domes are confirmed in the broader area of the northern South China Sea. Newly identified hydrothermal vents have crater- and mound-shaped surface expressions, and occur chiefly above igneous sills and volcanic edifices. Detailed stratigraphic analyses of volcanoes and hydrothermal vents suggest that magmatic activity took place in discrete phases between the early Miocene and the Quaternary. Importantly, the occurrence of hydrothermal vents close to the present seafloor, when accompanied by shallow igneous sills, suggest that fluid seepage is still active, well after main phases of volcanism previously documented in the literature. After combining geophysical and geochemical data, this study postulates that the extensive post-rift magmatism in the northern South China Sea is linked to the effect of a mantle plume over a long time interval. We propose that prolonged magmatism resulted in contact metamorphism in carbon-rich sediments, producing large amounts of hydrothermal fluid along the northern South China Sea. Similar processes are expected in parts of magma-poor margins in association with CO2/CH4 and heat flow release into sea water and underlying strata.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...