ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: ZSP-166(228)
    In: Berichte aus dem MARUM und dem Fachbereich Geowissenschaften der Universität Bremen
    Type of Medium: Series available for loan
    Pages: 218 S.
    Series Statement: Berichte aus dem Fachbereich Geowissenschaften der Universität Bremen 228
    Classification:
    Oceanology
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Enke
    In:  Geologische Rundschau, 78 (1). pp. 197-205.
    Publication Date: 2020-07-30
    Description: Based on sediment physical property data from DSDP/ ODP Legs 78A and 110 (Barbados Ridge Complex), a simple palinspastic reconstruction scheme was employed to study porosity changes during accretion. Undoing the compactional effects caused by imbricate stacking of wedge slices, a synthetic pre-accretion porosity depth profile was developed, which bears strong resemblence to a characteristic profile from a reference drillhole in front of the Barbados accretionary complex. Differences between synthetic and reference profile are interpreted in terms of a semiquantitative estimate of the relative impact of the horizontal stress component on gravitational compaction in accretionary wedge environments. An exponential relationship between depth and porosity divergence for distinct lithologic units is evident. The defined relationship facilitates the analysis of deformational behavior of accreted sediments in general.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-19
    Description: Based upon the molecular and isotopic composition of hydrocarbons it has been proposed that the source of CH4 in Gulf of Cadiz mud volcanoes (MV) is a mixture of deep sourced thermogenic CH4 and shallow biogenic CH4. We directly investigated this possibility by comparing porewater CH4 concentrations and their δ13Cvalues with the potential for Archaeal methanogenesis in Gulf of Cadiz mud volcano (MV) sediments (Captain Arutyunov, Bonjardim, Ginsburg and Porto) using 14C-rate measurements. The CH4 has a deep sourced thermogenic origin (δ13C ∼ −49‰) but becomes 13C-depleted in and beneath the zone of anaerobic oxidation of methane (AOM) where the rates of hydrogenotrophic methanogenesis increase. Thus we infer that a portion of AOMproduced CO2 is being recycled to CH4 by methanogens yielding further 13C-depleted CH4, which might be misinterpreted as indicative of a fully shallow biogenic origin for this gas. Production of H2 is related to compositional changes in sedimentary organic matter, or to upward flux of substrate-enriched fluids. In contrast to otherMVsin the Gulf of Cadiz, GinsburgMVfluids are enriched in SO2−4 and contain very high concentrations of acetate (2478 μM below 150 cmbsf); however, the high levels of acetate did not stimulate methanogenesis but instead were oxidized to CO2 coupled to sulphate reduction. Both anaerobic oxidation of thermogenic CH4 linked to shallow methanogenesis and fluid geochemistry control the recycling of deep-sourced carbon at Gulf of Cadiz MVs, impacting near-surface δ13C-CH4 values.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...