ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • EGU Copernicus  (2)
  • WILEY-BLACKWELL PUBLISHING  (2)
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (1)
  • EGU
  • 1
    Publication Date: 2019-09-24
    Description: Large quantities of methane are stored in hydrates and permafrost within shallow marine sediments in the Arctic Ocean. These reservoirs are highly sensitive to climate warming, but the fate of methane released from sediments is uncertain. Here, we review the principal physical and biogeochemical processes that regulate methane fluxes across the seabed, the fate of this methane in the water column, and potential for its release to the atmosphere. We find that, at present, fluxes of dissolved methane are significantly moderated by anaerobic and aerobic oxidation of methane. If methane fluxes increase then a greater proportion of methane will be transported by advection or in the gas phase, which reduces the efficiency of the methanotrophic sink. Higher freshwater discharge to Arctic shelf seas may increase stratification and inhibit transfer of methane gas to surface waters, although there is some evidence that increased stratification may lead to warming of sub-pycnocline waters, increasing the potential for hydrate dissociation. Loss of sea-ice is likely to increase wind speeds and seaair exchange of methane will consequently increase. Studies of the distribution and cycling of methane beneath and within sea ice are limited, but it seems likely that the sea-air methane flux is higher during melting in seasonally ice-covered regions. Our review reveals that increased observations around especially the anaerobic and aerobic oxidation of methane, bubble transport, and the effects of ice cover, are required to fully understand the linkages and feedback pathways between climate warming and release of methane from marine sediments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    EGU
    In:  EPIC3EGU, meeting of the European Geophysical Union, Wien, 2014-04-28-2014-05-02Viena, EGU
    Publication Date: 2014-05-19
    Description: Rivers represent a transition zone between terrestric and aquatic environments, as well as a transition zone between methane rich and methane poor environments. Methane concentrations in freshwater systems are in general higher than in marine systems. The Elbe River is one of the important rivers draining into the North Sea, as is the Lena River draining into the Laptev Sea. High methane concentrations have been observed within both rivers, and additional hot spots in the Lena Delta. However due to different stratification patterns in the mixing zones, the further fate of methane in the North Sea and the Laptev Sea is different. Methane consuming bacteria are known from both environments. However, in the transition zone between marine and limnic systems the shift in salinity imposes an osmotic stress for most organisms. In this study we want to compare the environmental data obtained in both estuaries with the methane oxidation to elucidate the efficiency of the respective methane oxidizing bacteria.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    EGU Copernicus
    In:  EPIC3EGU General Assembly (Sharing Geoscience Online), Vienna, 2020-05-04-2020-05-08Vienna, EGU Copernicus
    Publication Date: 2020-05-07
    Description: Rivers are suspected to be a main suppliers of greenhouse gases (methane and carbon dioxide) to coastal seas, while the role of the interjacent tidal flats is still ambiguous. In this study we investigated the role of the Elbe and Weser estuaries as source of methane to the North Sea. We used high spatially resolved methane measurements from an underway degassing system and subsequent analysis with cavity ring down spectroscopy. Thus, a high-resolution representation of the methane distribution in surface waters as well as of hydrographic parameters was obtained for several cruises with two ships in 2019. For most areas, riverine methane was simply diluted by seawater, overlain by a strong tidal signal. However, on several occasions unexpectedly high methane concentrations were observed. Further detailed analysis will elucidate the role of riverine versus tidal impact on coastal North Sea methane fluxes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-07-11
    Description: Methane emissions from freshwater environments contribute substantially to global warming but are under strong control of aerobic methane-oxidizing bacteria. Recently discovered methane seeps (pockmarks) in freshwater lake sediments have the potential to bypass this control by their strong outgassing activity. Whether this is counteracted by pelagic methanotrophs is not well understood yet. We used a 3H-CH4-radiotracer technique and pmoA-based molecular approaches to assess the activity, abundance and community structure of pelagic methanotrophs above active pockmarks in deep oligotrophic Lake Constance. Above profundal pockmarks, methane oxidation rates (up to 458 nmol CH4 l−1 d−1) exceeded those of the surrounding water column by two orders of magnitude and coincided with maximum methanotroph abundances of 0.6% of the microbial community. Phylogenetic analysis indicated a dominance of members of the Methylococcaceae in the water column of both, pockmark and reference sites, with most of the retrieved sequences being associated with a water-column specific clade. Communities at pockmark and reference locations also differed in parts, which was likely caused by entrainment of sediment-hosted methanotrophs at pockmark sites. Our results show that the release of seep-derived methane to the atmosphere is counteracted by a distinct methanotrophic community with a pronounced activity throughout bottom waters.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3FEMS Microbiology Ecology, WILEY-BLACKWELL PUBLISHING, ISSN: 0168-6496
    Publication Date: 2016-06-02
    Description: Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a floodplain area. Though, in all aquatic systems we detected both, Type I and II MOB, in lake systems we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-21
    Description: Measuring environmental variables over longer times in coastal marine environments is a challenge in regard to sensor maintenance and data processing of continuously produced comprehensive datasets. In the project “MOSES” (Modular Observation Solutions for Earth Systems), this procedure became even more complicated because seven large Helmholtz centers from the research field Earth and Environment (E&E) within the framework of the German Ministery of Educatiopn and Research (BMBF) work together to design and construct a large scale monitoring network across earth compartments to study the effects of short-term events on long term environmental trends. This requires the development of robust and standardized automated data acquisition and processing routines, to ensure reliable, accure and precise data. Here, the results of two intercomparison workshops on senor accuracy and precicion for selected environmental variables are presented. Environmental sensors which were to be used in MOSES campaigns on hydrological extremes (floods and draughts) in the Elbe catchment and the adjacent coastal areas in the North Sea in 2019 to 2020 were compared for selected parameters (temperature, salinity, chlorophyll-A, turbidity and methane) in the same experimentally controlled water body, assuming that all sensors provide comparable data. Results were analyzed with respect to individual sensor accuracy and precision related to an “assumed” real value as well as with respect to a cost versus accuracy/precision index for measuring specific environmental data. The results show, that accuracy and precision of sensors do not necessarily correlate with the price of the sensors and that low cost sensors may provide the same or even higher accuracy and precision values as even the highest price sensor types.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...