ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-12-01
    Description: Context. The surface reflectance of planetary regoliths may increase dramatically towards zero phase angle, a phenomenon known as the opposition effect (OE). Two physical processes that are thought to be the dominant contributors to the brightness surge are shadow hiding (SH) and coherent backscatter (CB). The occurrence of shadow hiding in planetary regoliths is self-evident, but it has proved difficult to unambiguously demonstrate CB from remote sensing observations. One prediction of CB theory is the wavelength dependence of the OE angular width. Aims. The Dawn spacecraft observed the OE on the surface of dwarf planet Ceres. We aim to characterize the OE over the resolved surface, including the bright Cerealia Facula, and to find evidence for SH and/or CB. It is presently not clear if the latter can contribute substantially to the OE for surfaces as dark as that of Ceres. Methods. We analyze images of the Dawn framing camera by means of photometric modeling of the phase curve. Results. We find that the OE of most of the investigated surface has very similar characteristics, with an enhancement factor of 1.4 and a full width at half maximum of 3° (“broad OE”). A notable exception are the fresh ejecta of the Azacca crater, which display a very narrow brightness enhancement that is restricted to phase angles
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-01
    Description: Aims. We model thermal evolution and water-rock differentiation of small ice-rock objects that accreted at different heliocentric distances, while also considering migration into the asteroid belt for Ceres. We investigate how water-rock separation and various cooling processes influence Ceres’ structure and its thermal conditions at present. We also draw conclusions about the presence of liquids and the possibility of cryovolcanism. Methods. We calculated energy balance in bodies heated by radioactive decay and compaction-driven water-rock separation in a three-component dust-water/ice-empty pores mixture, while also taking into consideration second-order processes, such as accretional heating, hydrothermal circulation, and ocean or ice convection. Calculations were performed for varying accretion duration, final size, surface temperature, and dust/ice ratio to survey the range of possible internal states for precursors of Ceres. Subsequently, the evolution of Ceres was considered in five sets of simulated models, covering different accretion and evolution orbits and dust/ice ratios. Results. We find that Ceres’ precursors in the inner solar system could have been both wet and dry, while in the Kuiper belt, they retain the bulk of their water content. For plausible accretion scenarios, a thick primordial crust may be retained over several Gyr, following a slow differentiation within a few hundreds of Myr, assuming an absence of destabilizing impacts. The resulting thermal conditions at present allow for various salt solutions at depths of ≲10 km. The warmest present subsurface is obtained for an accretion in the Kuiper belt and migration to the present orbit. Conclusions. Our results indicate that Ceres’ material could have been aqueously altered on small precursors. The modeled structure of Ceres suggests that a liquid layer could still be present between the crust and the core, which is consistent with Dawn observations and, thus, suggests accretion in the Kuiper belt. While the crust stability calculations indicate crust retention, the convection analysis and interior evolution imply that the crust could still be evolving.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...