ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (12)
  • 1
    Publication Date: 2011-01-26
    Description: As part of the international project entitled "African Monsoon Multidisciplinary Analysis (AMMA)", NAMMA (NASA AMMA) aimed to gain a better understanding of the relationship between the African Easterly Waves (AEWs), the Sahara Air Layer (SAL), and tropical cyclogenesis. The NAMMA airborne field campaign was based out of the Cape Verde Islands during the peak of the hurricane season, i.e., August and September 2006. Multiple Sahara dust layers were sampled during 62 encounters in the eastern portion of the hurricane main development region, covering both the eastern North Atlantic Ocean and the western Saharan desert (i.e., 5–22° N and 10–35° W). The centers of these layers were located at altitudes between 1.5 and 3.3 km and the layer thickness ranged from 0.5 to 3 km. Detailed dust microphysical and optical properties were characterized using a suite of in-situ instruments aboard the NASA DC-8 that included a particle counter, an Ultra-High Sensitivity Aerosol Spectrometer, an Aerodynamic Particle Sizer, a nephelometer, and a Particle Soot Absorption Photometer. The NAAMA sampling inlet has a size cut (i.e., 50% transmission efficiency size) of approximately 4 μm in diameter for dust particles, which limits the representativeness of the NAMMA observational findings. The NAMMA dust observations showed relatively low particle number densities, ranging from 268 to 461 cm−3, but highly elevated volume density with an average at 45 μm3 cm−3. NAMMA dust particle size distributions can be well represented by tri-modal lognormal regressions. The estimated volume median diameter (VMD) is averaged at 2.1 μm with a small range of variation regardless of the vertical and geographical sampling locations. The Ångström Exponent assessments exhibited strong wavelength dependence for absorption but a weak one for scattering. The single scattering albedo was estimated at 0.97 ± 0.02. The imaginary part of the refractive index for Sahara dust was estimated at 0.0022, with a range from 0.0015 to 0.0044. Closure analysis showed that observed scattering coefficients are highly correlated with those calculated from spherical Mie-Theory and observed dust particle size distributions. These values are generally consistent with literature values reported from studies with similar particle sampling size range.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-08
    Description: The NASA DC-8 aircraft characterized the aerosol properties, chemical composition, and cloud condensation nuclei (CCN) concentrations of the summertime Arctic during the 2008 NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. Air masses characteristic of fresh and aged biomass burning, boreal forest, Arctic background, and anthropogenic industrial pollution were sampled. Observations were spatially extensive (50–85° N and 40–130° W) and exhibit significant variability in aerosol and CCN concentrations. The chemical composition was dominated by highly oxidized organics (66–94% by volume), with a water-soluble mass fraction of more than 50%. The aerosol hygroscopicity parameter, κ, ranged between κ = 0.08–0.32 for all air mass types. Industrial pollution had the lowest κ of 0.08 ± 0.01, while the Arctic background had the highest and most variable κ of 0.32 ± 0.21, resulting from a lower and more variable organic fraction. Both fresh and aged (long-range transported) biomass burning air masses exhibited remarkably similar κ (0.18 ± 0.13), consistent with observed rapid chemical and physical aging of smoke emissions in the atmosphere, even in the vicinity of fresh fires. The organic hygroscopicity (κorg) was parameterized by the volume fraction of water-soluble organic matter (εWSOM), with a κ = 0.12, such that κorg = 0.12εWSOM. Assuming bulk (size-independent) composition and including the κorg parameterization enabled CCN predictions to within 30% accuracy for nearly all environments sampled. The only exception was for industrial pollution from Canadian oil sands exploration, where an external mixture and size-dependent composition was required. Aerosol mixing state assumptions (internal vs. external) in all other environments did not significantly affect CCN predictions; however, the external mixing assumption provided the best results, even though the available observations could not determine the true degree of external mixing and therefore may not always be representative of the environments sampled. No correlation was observed between κorg and O : C. A novel correction of the CCN instrument supersaturation for water vapor depletion, resulting from high concentrations of CCN, was also employed. This correction was especially important for fresh biomass burning plumes where concentrations exceeded 1.5×104 cm−3 and introduced supersaturation depletions of ≥25%. Not accounting for supersaturation depletion in these high concentration environments would therefore bias CCN closure up to 25% and inferred κ by up to 50%.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-11
    Description: Contrails and contrail-induced cirrus clouds are identified as the most uncertain components in determining aviation impacts on global climate change. Parameters affecting contrail ice particle formation immediately after the engine exit plane (〈 5 s in plume age) may be critical to ice particle properties used in large-scale models predicting contrail radiative forcing. Despite this, detailed understanding of these parametric effects is still limited. In this paper, we present results from recent laboratory and modeling studies conducted to investigate the effects of water and soot emissions and ambient conditions on near-field formation of contrail ice particles and ice particle properties. The Particle Aerosol Laboratory (PAL) at the NASA Glenn Research Center and the Aerodyne microphysical parcel model for contrail ice particle formation were employed. Our studies show that exhaust water concentration has a significant impact on contrail ice particle formation and properties. When soot particles were introduced, ice particle formation was observed only when exhaust water concentration was above a critical level. When no soot or sulfuric acid was introduced, no ice particle formation was observed, suggesting that ice particle formation from homogeneous nucleation followed by homogeneous freezing of liquid water was unfavorable. Soot particles were found to compete for water vapor condensation, and higher soot concentrations emitted into the chamber resulted in smaller ice particles being formed. Chamber conditions corresponding to higher cruising altitudes were found to favor ice particle formation. The microphysical model captures trends of particle extinction measurements well, but discrepancies between the model and the optical particle counter measurements exist as the model predicts narrower ice particle size distributions and ice particle sizes nearly a factor of two larger than measured. These discrepancies are likely due to particle loss and scatter during the experimental sampling process and the lack of treatment of turbulent mixing in the model. Our combined experimental and modeling work demonstrates that formation of contrail ice particles can be reproduced in the NASA PAL facility, and the parametric understanding of the ice particle properties from the model and experiments can potentially be used in large-scale models to provide better estimates of the impact of aviation contrails on climate change.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-09-20
    Description: The NASA DC-8 aircraft characterized the aerosol properties, chemical composition, and cloud condensation nuclei (CCN) concentrations of the summertime Arctic during the 2008 NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. Air masses characteristic of fresh and aged biomass burning, boreal forest, Arctic background, and anthropogenic industrial pollution were sampled. Observations were spatially extensive (50–85° N and 40–130° W) and exhibit significant variability in aerosol and CCN concentrations. The chemical composition was dominated by highly oxidized organics (66–94% by volume), more than half of which was water-soluble. The aerosol hygroscopicity parameter, κ, ranged between κ = 0.1–0.32 for all air mass types. Industrial pollution had the lowest κ of 0.08 ± 0.01, while the Arctic background had the highest and most variable κ of 0.32 ± 0.21, resulting from a lower and more variable organic fraction. Both fresh and aged (long-range transported) biomass burning air masses exhibited remarkably similar κ (0.18 ± 0.13), consistent with observed rapid chemical and physical aging of smoke emissions in the atmosphere, even in the vicinity of fresh fires. The organic hygroscopicity (κorg) was parameterized by the volume fraction of water-soluble organic matter (ϵWSOM), with a κ = 0.12, such that κorg = 0.12ϵWSOM. Assuming bulk (size-independent) composition and including the κorg parameterization enabled CCN predictions to within 30% accuracy for nearly all environments sampled. The only exception was for industrial pollution from Canadian oil sands exploration, where an external mixture and size-dependent composition was required. Aerosol mixing state assumptions (internal vs. external) in all other environments did not significantly affect CCN predictions; however, the external mixing assumption provided the best results, even though the available observations could not determine the true degree of external mixing. No correlation was observed between κorg and O : C. A novel correction of the CCN instrument supersaturation for water vapor depletion, resulting from high concentrations of CCN, was also employed. This correction was especially important for fresh biomass burning plumes where concentrations exceeded 1.5 × 104 cm−3 and introduced supersaturation depletions of ≥25%. Not accounting for supersaturation depletion in these high concentration environments would therefore bias CCN closure and inferred κ by up to 50%.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-08-28
    Description: In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type, such as composition, size and hygroscopicity, and to the surrounding atmosphere, such as temperature, relative humidity (RH) and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in-situ atmospheric profiling in the Baltimore, MD–Washington, DC region was performed during fourteen flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 49 %) due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of ammonium sulfate increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity causing an increase in the water content of the aerosol. Conversely, low aerosol loading days had lower ammonium sulfate and higher black carbon contributions causing lower single scattering albedos (SSAs). The average black carbon concentrations were 240 ng m−3 in the lowest 1 km decreasing to 35 ng m−3 in the free troposphere (above 3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed layer aerosol. Aerosol loading was found to be the predominant source accounting for 88 % on average of the measured spatial variability in extinction with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first-order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite/modelling assimilation products that are able to capture these components of the AOD-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day-to-day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015) that determined the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-09-28
    Description: Contrails and contrail-induced cirrus clouds are identified as the most uncertain components in determining aviation impacts on global climate change. Parameters affecting contrail ice particle formation immediately after engine exit plane (
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-05-26
    Description: As part of the international project entitled "African Monsoon Multidisciplinary Analysis (AMMA)", NAMMA (NASA AMMA) aimed to gain a better understanding of the relationship between the African Easterly Waves (AEWs), the Sahara Air Layer (SAL), and tropical cyclogenesis. The NAMMA airborne field campaign was based out of the Cape Verde Islands during the peak of the hurricane season, i.e., August and September 2006. Multiple Sahara dust layers were sampled during 62 encounters in the eastern portion of the hurricane main development region, covering both the eastern North Atlantic Ocean and the western Saharan desert (i.e., 5–22° N and 10–35° W). The centers of these layers were located at altitudes between 1.5 and 3.3 km and the layer thickness ranged from 0.5 to 3 km. Detailed dust microphysical and optical properties were characterized using a suite of in situ instruments aboard the NASA DC-8 that included a particle counter, an Ultra-High Sensitivity Aerosol Spectrometer, an Aerodynamic Particle Sizer, nephelometer, and Particle Soot Absorption Photometer. The NAMMA dust observations showed relatively low particle number densities, ranging from 268 to 461 cm−3, but highly elevated volume density with an average at 45 μm3 cm−3. NAMMA dust particle size distributions were well represented by tri-modal lognormal regressions. The estimated volume median diameter (VMD) is averaged at 2.1 μm with a small range of variation regardless of the vertical and geographical sampling locations. The absorption coefficient measurements exhibited a strong wavelength dependence for absorption but a weak one for scattering. The single scattering albedo was estimated at 0.97±0.02. Closure analyses showed that observed scattering and absorption coefficients are highly correlated with those calculated from spherical Mie-Theory and observed dust particle size distributions. The imaginary part of the refractive index for Sahara dust was estimated at 0.0022, with a range from 0.0015 to 0.0044. These values are generally consistent with literature values.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-24
    Description: Retrievals of aerosol microphysical properties (effective radius, volume and surface-area concentrations) and aerosol optical properties (complex index of refraction and single-scattering albedo) were obtained from a hybrid multiwavelength lidar data set for the first time. In July 2011, in the Baltimore–Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne (in situ and remote sensing) and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar data set combines ground-based elastic backscatter lidar measurements at 355 nm with airborne High-Spectral-Resolution Lidar (HSRL) measurements at 532 nm and elastic backscatter lidar measurements at 1064 nm that were obtained less than 5 km apart from each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor in such discrepancies.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-11-11
    Description: We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300–700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-03-28
    Description: Retrievals of aerosol microphysical properties (e.g. effective radius, volume and surface-area concentrations) and aerosol optical properties (e.g. complex index of refraction and single scattering albedo) were obtained from a hybrid multiwavelength lidar dataset for the first time. In July of 2011, in the Baltimore-Washington DC region, synergistic profiling of optical and microphysical properties of aerosols with both airborne in-situ and ground-based remote sensing systems was performed during the first deployment of DISCOVER-AQ. The hybrid multiwavelength lidar dataset combines elastic ground-based measurements at 355 nm with airborne High Spectral Resolution Lidar (HSRL) measurements at 532 nm and elastic measurements at 1064 nm that were obtained less than 5 km apart of each other. This was the first study in which optical and microphysical retrievals from lidar were obtained during the day and directly compared to AERONET and in-situ measurements for 11 cases. Good agreement was observed between lidar and AERONET retrievals. Larger discrepancies were observed between lidar retrievals and in-situ measurements obtained by the aircraft and aerosol hygroscopic effects are believed to be the main factor of such discrepancies.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...