ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-08-09
    Description: Complex dynamic models of carbon and nitrogen are often used to investigate the consequences of climate change on agricultural production and greenhouse gas emissions from agriculture. These models require high temporal resolution input data regarding the timing of field operations. This paper describes the Timelines model, which predicts the timelines of key field operations across Europe. The evaluation of the model suggests that it is broadly capable of simulating the timing of field operations for a range of arable crops at different locations. Systematic variations in the date of harvesting and in the timing of the first application of N fertiliser to winter crops need to be corrected and the prediction of soil workability and trafficability might enable the prediction of ploughing and applications of solid manure in preparation for spring crops. The data concerning the thermal time thresholds for sowing and harvesting underlying the model should be updated and extended to a wider range of crops.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-08-17
    Description: Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine) and 0.138 ± 0.062 kgC m−2 yr−1 (beech) and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine) and 0.575 ± 0.105 kgN ha−1 yr−1 (beech). The European average greenhouse gas potential of the carbon source was 18 (pine) and 8 (beech) times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to have differing sensitivities to environmental change, in particular the response to changes in nitrogen and precipitation, with beech forest more vulnerable to drought. There was considerable uncertainty about the geographical location of N2O emissions. Two of the models BASFOR and LandscapeDNDC had largest emissions in central Europe where nitrogen deposition and soil nitrogen were largest whereas the two other models identified different regions with large N2O emission. N2O emissions were found to be larger from beech than pine forests and were found to be particularly sensitive to forest growth.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-29
    Description: To assess the responses of nitrogen and greenhouse gas emissions to pan-European changes in land cover, land management and climate, an integrated dynamic model, INTEGRATOR, has been developed. This model includes both simple process-based descriptions and empirical relationships, and uses detailed GIS-based environmental and farming data in combination with various downscaling methods. This paper analyses the propagation of uncertainties in model inputs and model parameters to outputs of INTEGRATOR, using a Monte Carlo analysis. Uncertain model inputs and parameters were represented by probability distributions, while spatial correlation in these uncertainties was taken into account by assigning correlation coefficients at various spatial scales. The uncertainty propagation was analysed for the emissions of NH3, N2O and NOx and N leaching to groundwater and N surface runoff to surface water for the entire EU27 and for individual countries. Results show large uncertainties for N leaching and N runoff (relative errors of ~19 % for Europe as a whole), and smaller uncertainties for emission of N2O, NH3 and NOx (relative errors of ~12 %). Uncertainties for Europe as a whole were much smaller compared to uncertainties at Country level, because errors partly cancelled out due to spatial aggregation.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1998-12-31
    Description: Dynamics of C and N in forest soils in the Nutrient Cycling and Soil Acidification Model (NUCSAM) are described by the transformation and decomposition of three organic matter compartments, litter, fermented material and humic material. These three compartments are allocated to the morphological distinguishable L, F and H horizons of the organic layer. Changes in the pools of these organic compartments are described with first order equations for decomposition and transformation. Rate constants for decomposition and transformation were derived by calibrating the model to measured organic matter pools in organic layers of a chrono-sequence of five first succession Scots pine stands between 15 and 120 years old. Simulated pools of organic matter in the organic layers were in agreement with measured pools in the five pine stands, except for the first thirty years of the H-horizon. During this period, an increase in organic matter in the H horizon was simulated while no H horizons were observed in the field. The simulated total pool of organic matter in the organic layer agreed well with values from a field inventory in 20 other Scots pine stands, but the simulated distribution over the three horizons differed from the field measurements which varied among sites. For the Scots pine stands the model was able to simulate the organic matter accumulation in the top 40-cm of the mineral soil; derived almost completely from fine root turnover. The accumulated pool of nitrogen in the organic layer was in agreement with measured pools for the oldest Scots pine stand but was too high for the younger stands. Especially, the accumulation of N in the F-horizon was too fast, presumably due to an overestimated retention of nitrogen.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-08-31
    Description: To evaluate the effects of nitrogen (N) emission policies, reliable information on nitrate concentrations and leaching fluxes from forest ecosystems is necessary. Insight into the regional variability of nitrate concentrations, to support local policy on emission abatement strategies is especially desirable. In this paper, three methods for the calculation of a spatial distribution of soil nitrate concentrations in Dutch forest ecosystems are compared. These are (i) a regression model based on observed nitrate concentrations and additional data on explanatory variables such as soil type, tree species and nitrogen deposition (ii) a semi-empirical dynamic model WANDA, and (iii) a process-oriented dynamic model SMART2. These two dynamic models are frequently used to evaluate the effects of reductions in nitrogen deposition at scales ranging from regional to countrywide. The results of the regression model evaluated the performance of the two dynamic models. Furthermore, the results of the three methods are compared with the steady-state approach currently used for the derivation of nitrogen critical loads. Both dynamic models, in the form of cumulative distribution functions, give similar results on a national scale. Regional variability is predicted differently by both models. Discrepancies are caused mainly by a difference in handling forest filtering and denitrification. All three methods show that, despite the high nitrogen inputs, Dutch forests still accumulate more N than they release. This implies that, in respect of groundwater quality, presently acceptable nitrogen deposition is higher than the (long-term) critical loads. However, in areas with high atmospheric nitrogen input, all three methods indicate that the EU standard for nitrate in groundwater (50 mg NO3 l–1) is exceeded. Steady-state with nitrogen deposition seems to have been reached in about 10% of the forested area, with a nitrate concentration greater than 50 mg NO3–1. Keywords: soil modelling, up-scaling, model validation, critical load
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2002-06-30
    Description: This study focuses on spatial variability of throughfall water and chemistry and forest floor water content within a Douglas fir (Pseudotsuga menziesii, Franco L.) forest plot. Spatial patterns of water and chemistry (NH4+, NO3‾, SO42-, Cl‾, Mg2+, Ca2+, Na+ and K+) were compared and tested for stability over time. The spatial coefficient of variation (CV) was between 18 and 26% for amounts of throughfall water and ions, and 17% for forest floor water content. Concentrations and amounts of all ions were correlated significantly. Ion concentrations were negatively correlated with throughfall water amounts, but, except for NH4+, there was no such relation between throughfall water and ion amounts. Spatial patterns of throughfall water fluxes and forest floor water contents were consistent over time; patterns of ion fluxes were somewhat less stable. Because of the spatial variability of forest floor thickness and drainage, it was not possible to relate patterns in throughfall water directly to patterns in water content. The spatial variability of throughfall nitrogen and forest floor water contents can cause significant variability in NO3‾ production within the plot studied. Keywords: nutrient throughfall, forest floor water, spatial variability, time-stability, nitrogen
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-06-04
    Description: A comparison was made between upscaled model results of nitrogen (N) fluxes to air and water from 450 sites within the EU27 and results derived for the entire EU27 area using the model INTEGRATOR. The 450 sites were selected using stratified random sampling, dividing the EU27 into 150 strata and selecting three sites at random within each stratum. The strata were based on important environmental factors influencing N fluxes. Hierarchical divisive cluster analysis was used to reduce the numerous combinations of environmental factors to the required total of 150, such that the heterogeneity of environmental factors within strata was as small as possible. Modelled NH3, N2O and NOx emissions and N leaching/runoff obtained were scaled up from the 450 sites to the entire EU27 and were within 10% of results obtained by running the model for the whole of the EU27. This implies that a reliable estimate of N fluxes for EU27can be made by upscaling results of the 450 selected sites suggesting that dramatic reductions in computation time can be achieved without substantial deterioration of results.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-03-14
    Description: Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine) and 0.138 ± 0.062 kgC m−2 yr−1 (beech) and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine) and 0.575 ± 0.105 kgN ha−1 yr−1 (beech). The European average greenhouse gas potential of the carbon sink was 18 (pine) and 8 (beech) times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to have differing sensitivities to environmental change, in particular the response to changes in nitrogen and precipitation, with beech forest more vulnerable to drought. There was considerable uncertainty about the geographical location of N2O emissions. Two of the models BASFOR and LandscapeDNDC had largest emissions in central Europe where nitrogen deposition and soil nitrogen were largest, whereas the two other models identified different regions with large N2O emission. N2O emissions were found to be larger from beech than pine forests and were found to be particularly sensitive to forest growth.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-11-16
    Description: A comparison was made between upscaled model results of nitrogen (N) fluxes to air and water from 450 sites within the EU-27 and results derived for the entire EU-27 area using the model INTEGRATOR. The 450 sites were selected using stratified random sampling, dividing the EU-27 into 150 strata and selecting three sites at random within each stratum. The strata were based on important environmental factors influencing N fluxes. Hierarchical divisive cluster analysis was used to reduce the numerous combinations of environmental factors to the required total of 150, such that the heterogeneity of environmental factors within strata was as small as possible. Modelled NH3, N2O and NOx emissions and N leaching/runoff obtained were scaled up from the 450 sites to the entire EU-27 and were within 10% of results obtained by running the model for the whole of the EU-27 using about 36 500 sites. This implies that a reliable estimate of N fluxes for EU-27 can be made by upscaling results of the 450 selected sites suggesting that dramatic reduction in computation time can be achieved without substantial deterioration of results
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-11-20
    Description: To assess the responses of nitrogen and greenhouse gas emissions to pan-European changes in land cover, land management and climate, an integrated dynamic model, INTEGRATOR, has been developed. This model includes both simple process-based descriptions and empirical relationships and uses detailed GIS-based environmental and farming data in combination with various downscaling methods. This paper analyses the propagation of uncertainties in model inputs and parameters to outputs of INTEGRATOR, using a Monte Carlo analysis. Uncertain model inputs and parameters were represented by probability distributions, while spatial correlation in these uncertainties was taken into account by assigning correlation coefficients at various spatial scales. The uncertainty propagation was analysed for the emissions of NH3, N2O and NOx, N leaching to groundwater and N runoff to surface water for the entire EU27 and for individual countries. Results show large uncertainties for N leaching and runoff (relative errors of ∼ 19% for Europe as a whole), and smaller uncertainties for emission of N2O, NH3 and NOx (relative errors of ∼ 12%). Uncertainties for Europe as a whole were much smaller compared to uncertainties at country level, because errors partly cancelled out due to spatial aggregation.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...