ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-11-19
    Description: Windsor (Ontario) – the automotive capital of Canada does not have any significant mercury (Hg) sources. However, Windsor experiences trans-boundary air pollution as it is located immediately downwind of industrialized regions of the United States of America. A study was conducted in 2007 aimed to identify the potential regional sources of total gaseous mercury (TGM) and investigate the effects of regional sources and other factors on seasonal variability of TGM concentrations in Windsor. TGM concentration was measured at the University of Windsor campus using a Tekran® 2537A Hg vapour analyzer. An annual mean of 2.02±1.63 ng/m3 was observed in 2007. The average TGM concentration was high in the summer (2.48 ng/m3) and winter (2.17 ng/m3), compared to spring (1.88 ng/m3) and fall (1.76 ng/m3). Hybrid receptor modeling potential source contribution function (PSCF) was used by incorporating 72-h backward trajectories and measurements of TGM in Windsor. The results of PSCF were analyzed in conjunction with the Hg emissions inventory of North America (by state/province) to identify regions affecting Windsor. In addition to annual modeling, seasonal PSCF modeling was also conducted. The potential source region was identified between 24–61° N and 51–143° W. Annual PSCF modeling identified major sources southwest of Windsor, stretching from Ohio to Texas. The emissions inventory also supported the findings, as Hg emissions were high in those regions. Results of seasonal PSCF modeling were analyzed to find the combined effects of regional sources, meteorological conditions, and surface reemissions, on intra-annual variability of Hg concentrations. It was found that the summer and winter highs of atmospheric Hg can be attributed to areas where large numbers of coal fired power plants are located in the USA. Weak atmospheric dispersion due to low winds and high reemission from surfaces due to higher temperatures contributed to high concentrations in the summer. In the winter, the atmospheric removal of Hg was slow, but strong winds led to more dispersion, resulting in lower concentrations than the summer. Future studies could use smaller grid sizes and refined emission inventories, for more accurate analysis of source-receptor relationship of atmospheric Hg. Abbreviations of states/provinces: Alabama (AL), Arkansas (AR), British Columbia (BC), Georgia (GA), Iowa (IA), Illinois (IL), Indiana (IN), Kentucky (KY), Louisiana (LA), Manitoba (MB), Michigan (MI), Minnesota (MN), Mississippi (MS), Missouri (MO), Newfoundland and Labrador (NL), Ohio (OH), Ontario (ON), Oregon (OR), Pennsylvania (PA), Tennessee (TN), Texas (TX), West Virginia (WV), Wisconsin (WI).
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-08-03
    Description: Windsor (Ontario, Canada) experiences trans-boundary air pollution as it is located on the border immediately downwind of industrialized regions of the United States of America. A study was conducted in 2007 to identify the potential regional sources of total gaseous mercury (TGM) and investigate the effects of regional sources and other factors on seasonal variability of TGM concentrations in Windsor. TGM concentration was measured at the University of Windsor campus using a Tekran® 2537A Hg vapour analyzer. An annual mean of 2.02±1.63 ng/m3 was observed in 2007. The average TGM concentration was high in the summer (2.48±2.68 ng/m3) and winter (2.17±2.01 ng/m3), compared to spring (1.88±0.78 ng/m3) and fall (1.76±0.58 ng/m3). Hybrid receptor modeling potential source contribution function (PSCF) was used by incorporating 72-h backward trajectories and measurements of TGM in Windsor. The results of PSCF were analyzed in conjunction with the Hg emissions inventory of North America (by state/province) to identify regions affecting Windsor. In addition to annual modeling, seasonal PSCF modeling was also conducted. The potential source region was identified between 24–61° N and 51–143° W. Annual PSCF modeling identified major sources southwest of Windsor, stretching from Ohio to Texas. The emissions inventory also supported the findings, as Hg emissions were high in those regions. Results of seasonal PSCF modeling were analyzed to find the combined effects of regional sources, meteorological conditions, and surface re-emissions, on seasonal variability of Hg concentrations. It was found that the summer and winter highs of atmospheric Hg can be attributed to areas where large numbers of coal fired power plants are located in the USA. Weak atmospheric dispersion due to low winds and high re-emission from surfaces due to higher temperatures also contributed to high concentrations in the summer. In the winter, the atmospheric removal of Hg was slow, but strong winds led to more dispersion, resulting in lower concentrations than the summer. Future studies could use smaller grid sizes and refined emission inventories, for more accurate analysis of source-receptor relationship of atmospheric Hg.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-15
    Description: This study examines dynamical and microphysical features of convective clouds that affect mercury (Hg) wet scavenging and concentrations in rainfall. Using idealized numerical model simulations in the Regional Atmospheric Modeling System (RAMS), we diagnose vertical transport and scavenging of soluble Hg species – gaseous oxidized mercury (GOM) and particle-bound mercury (HgP), collectively Hg(II) – in thunderstorms under typical environmental conditions found in the Northeast and Southeast United States (US). Mercury scavenging efficiencies from various initial altitudes are diagnosed for a case study of a typical strong convective storm in the Southeast US. Assuming that soluble mercury concentrations are initially vertically uniform, the model results suggest that 60% of mercury deposited to the surface in rainwater originates from above the boundary layer (〉 2 km). The free troposphere could supply a larger fraction of mercury wet deposition if GOM and HgP concentrations increase with altitude. We use radiosonde observations in the Northeast and Southeast to characterize three important environmental characteristics that influence thunderstorm morphology: convective available potential energy (CAPE), vertical shear (0–6 km) of horizontal wind (SHEAR) and precipitable water (PW). The Southeast US generally has lower SHEAR and higher CAPE and PW. We then use RAMS to test how PW and SHEAR impact mercury scavenging and deposition, while keeping the initial Hg(II) concentrations fixed in all experiments. We found that the mercury concentration in rainfall is sensitive to SHEAR with the nature of sensitivity differing depending upon the PW. Since CAPE and PW cannot be perturbed independently, we test their combined influence using an ensemble of thunderstorm simulations initialized with environmental conditions for the Northeast and Southeast US. These simulations, which begin with identical Hg(II) concentrations, predict higher mercury concentrations in rainfall from thunderstorms forming in the environmental conditions over the Southeast US compared to the Northeast US. A final simulation of a stratiform rain event produces lower mercury concentrations than in thunderstorms forming in environments typical of the Southeast US. The stratiform cloud scavenges mercury from the lowest ~ 4 km of the atmosphere, while thunderstorms scavenge up to ~ 10 km.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2006-02-15
    Description: Only a few rockfall simulation models take into account the mitigating effect of existing forest cover. The objective of our study was to improve the generic rockfall simulation model RockyFor, which does take the effect of forest stands into account, thereby developing a clear method for quantifying and modelling slope surface characteristics based on quantitative field data. To obtain these data we carried out 218 real-size rockfall experiments on forested and non-forested sites on a mountain slope in the French Alps. On the basis of a polygon map representing different diameter classes of the material covering the slope, we determine the mean obstacle height (MOH) for each homogeneous unit at the experimental sites. We proposed an algorithm for calculating the tangential coefficient of restitution using the MOH. Comparing the simulated and observed data from the real-size rockfall experiments showed that the 3-D combined deterministic-probabilistic rockfall simulation model RockyFor accurately predicted rockfall events on a non-forested (Root Mean Square Error = 17%) and a forested site (Root Mean Square Error = 12%). We conclude that for further improvement of rockfall-forest simulation on different slope types more quantitative data is required on (1) the energy dissipative capacity of shrubs and bushes (e.g. in coppice stands), (2) the effect of the slope material, (3) the rock shape as well as the rock size, and (4) the tangential and normal coefficient of restitution. Based on the presented results we can state that the RockyFor model could contribute to better taking into account the mitigating effect of the existing forest cover when planning protective measures.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-03-14
    Print ISSN: 2190-5010
    Electronic ISSN: 2190-5029
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-06-11
    Description: In May 2013, a massive ice jam on the Yukon River caused flooding that destroyed much of the infrastructure in the Interior Alaska village of Galena and forced the long-term evacuation of nearly 70% of its residents. This case study compares the communication efforts of the out-of-state emergency response agents with those of the Alaska River Watch program, a state-operated flood preparedness and community outreach initiative. For over 50 years, the River Watch program has been fostering long-lasting, open, and reciprocal communication with flood prone communities, as well as local emergency management and tribal officials. By taking into account cultural, ethnic, and socioeconomic features of rural Alaskan communities, the River Watch program was able to establish and maintain a sense of partnership and reliable communication patterns with communities at risk. As a result, officials and residents in these communities are open to information and guidance from the River Watch during the time of a flood, and thus are poised to take prompt actions. By informing communities of existing ice conditions and flood threats on a regular basis, the River Watch provides effective mitigation efforts in terms of ice jam flood effects reduction. Although other ice jam mitigation attempts had been made throughout US and Alaskan history, the majority proved to be futile and/or cost-ineffective. Galena, along with other rural riverine Alaskan communities, has to rely primarily on disaster response and recovery strategies to withstand the shock of disasters. Significant government funds are spent on these challenging efforts and these expenses might be reduced through an improved understanding of both the physical and climatological principals behind river ice breakup and risk mitigation. This study finds that long term dialogue is critical for effective disaster response and recovery during extreme hydrological events connected to changing climate, timing of river ice breakup, and flood occurrence in rural communities of the Far North.
    Print ISSN: 2199-8981
    Electronic ISSN: 2199-899X
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-22
    Description: In this paper a new advection scheme for the online coupled chemical–weather prediction model Enviro-HIRLAM is presented. The new scheme is based on the locally mass-conserving semi-Lagrangian method (LMCSL), where the original two-dimensional scheme has been extended to a fully three-dimensional version. This means that the three-dimensional semi-implicit semi-Lagrangian scheme which is currently used in Enviro-HIRLAM is largely unchanged. The HIRLAM model is a computationally efficient hydrostatic operational short-term numerical weather prediction model, which is used as the base for the online integrated Enviro-HIRLAM. The new scheme is shown to be efficient, mass conserving, and shape preserving, while only requiring minor alterations to the original code. It still retains the stability at long time steps, which the semi-Lagrangian schemes are known for, while handling the emissions of chemical species accurately. Several mass-conserving filters have been tested to assess the optimal balance of accuracy vs. efficiency.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-10
    Description: A recent palaeo-reconstruction of the strength of the Iceland–Scotland overflow during the last 600 years suggests that its low-frequency variability exhibits strong similarity with palaeo-reconstructions of the Atlantic Multidecadal Oscillation (AMO). The underlying mechanism of the similar variation remains unclear, however, based on palaeo-reconstructions alone. In this study we use simulations of the last millennium driven by external forcing reconstructions with three coupled climate models in order to investigate possible mechanisms underlying the similar variation of Iceland–Scotland overflow strength and AMO index. Similar variation of the two time series is also largely found in the model simulations. Our analysis indicates that the basin-wide AMO index in the externally forced simulations is dominated by the low-latitude sea surface temperature (SST) variability and is not predominantly driven by variations in the strength of the Atlantic meridional overturning circulation (MOC). This result suggests that a large-scale link through the strength of the MOC is not sufficient to explain the (simulated) similar variation of Iceland–Scotland overflow strength and AMO index. Rather, a more local link through the influence of the Nordic seas surface state and density structure, which are positively correlated with the AMO index, on the pressure gradient across the Iceland–Scotland ridge is responsible for the (simulated) similar variation. In the model simulation showing a weaker correlation between the Iceland–Scotland overflow strength and the AMO index, the wind stress in the Nordic seas also influences the overflow strength. Our study demonstrates that palaeo-climate simulations provide a useful tool to understand mechanisms and large-scale connections associated with the relatively sparse palaeo-observations.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-02-08
    Description: This study examines dynamical and microphysical features of convective clouds that affect mercury (Hg) wet scavenging and concentrations in rainfall. Using idealized numerical model simulations in the Regional Atmospheric Modeling System (RAMS), we diagnose vertical transport and scavenging of soluble Hg species in thunderstorms under typical environmental conditions found in the Northeast and Southeast United States (US). Three important environmental characteristics that impact thunderstorm morphology were studied: convective available potential energy (CAPE), vertical shear (0–6 km) of horizontal wind (SHEAR) and precipitable water (PW). We find that in a strong convective storm in the Southeast US that about 40% of mercury in the boundary layer (0–2 km) can be scavenged and deposited to the surface. Removal efficiencies are 35% or less in the free troposphere and decline with altitude. Nevertheless, if we assume that soluble Hg species are initially uniformly mixed vertically, then about 60% deposited mercury deposited by the thunderstorm originates in the free troposphere. For a given CAPE, storm morphology and Hg deposition respond to SHEAR and PW. Experiments show that the response of mercury concentration in rainfall to SHEAR depends on the amount of PW. For low PW, increasing SHEAR decreases mercury concentrations in high-rain amounts (〉13 mm). However, at higher PW values, increasing SHEAR decreases mercury concentrations for all rainfall amounts. These experiments suggest that variations in environmental characteristics relevant to thunderstorm formation and evolution can also contribute to geographical difference in wet deposition of mercury. An ensemble of thunderstorm simulations was also conducted for different combinations of CAPE, SHEAR and PW values derived from radiosonde observations at five sites in the Northeast United States (US) and at three sites in the Southeast US. Using identical initial concentrations of gaseous oxidized mercury (GOM) and particle-bound mercury (HgP), from the GEOS-Chem model, the simulations predict higher mercury concentrations in rainfall from thunderstorms forming in the environmental conditions over the Southeast US compared to the Northeast US. Mercury concentrations in rainfall are also simulated for a typical stratiform rain event and found to be less than in thunderstorms forming in environments typical of the Southeast US. The stratiform cloud scavenges mercury from the lower ~4 km of the atmosphere, while thunderstorms scavenge up to ~10 km.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...