ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-10-16
    Description: Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-19
    Description: The Global Positioning System (GPS) Radio Occultation (RO) method is a relatively new technique for taking atmospheric measurements for use in both weather and climate studies. As such, this technique needs to be evaluated for all parts of the globe. Here, we present an extensive evaluation of the performance of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) GPS RO observations of the Southern Ocean boundary layer. The two COSMIC products used here are the "wetPrf" product, which is based on 1-D variational analysis with European Centre for Medium-Range Weather Forecasts (ECMWF), and the "atmPrf" product, which contains the raw measurements from COSMIC. A direct comparison of temporally and spatially co-located COSMIC profiles and high resolution radiosonde profiles from Macquarie Island (54.62° S, 158.85° E) highlights weaknesses in the ability of both COSMIC products to identify the boundary layer structure, as identified by break points in the refractivity profile. In terms of reproducing the temperature and moisture profile in the lowest 2.5 km, the "wetPrf" COSMIC product does not perform as well as an analysis product from the ECMWF. A further statistical analysis is performed on a large number of COSMIC profiles in a region surrounding Macquarie Island. This indicates that, statistically, COSMIC performs well at capturing the heights of main and secondary break points. However the frequency of break points detected is lower than the radiosonde profiles suggest, but this could be simply due to the long horizontal averaging in the COSMIC measurements. There is also a weak seasonal cycle in the boundary layer height, providing some confidence in the ability of COSMIC to detect an important boundary layer variable.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-11-17
    Description: Fourteen research flights were conducted with the National Center for Atmospheric Research (NCAR) C-130 near Christmas Island (2° N, 157° W) during the summer of 2007 as part of the Pacific Atmospheric Sulfur Experiment (PASE). In order to tightly constrain the scalar budget of DMS, vertical eddy fluxes were measured at various levels in the marine boundary layer (MBL) from ~30 m to the top of the mixed layer (~500 m) providing improved accuracy of the flux divergence calculation in the DMS budget. The observed mean mole fraction of DMS in the MBL exhibited the well-known diurnal cycle, ranging from 50–95 pptv in the daytime to 90–110 pptv at night. Contributions from horizontal advection are included using a multivariate regression of all DMS flight data within the MBL to estimate the mean gradients and trends. With this technique we can use the residual term in the DMS budget as an estimate of overall photochemical oxidation. Error analysis of the various terms in the DMS budget indicate that chemical losses acting on time scales of up to 110 h can be inferred with this technique. On average, photochemistry accounted for ~7.4 ppt hr −1 loss rate for the seven daytime flights, with an estimated error of 0.6 ppt hr−1. The loss rate due to expected OH oxidation is sufficient to explain the net DMS destruction without invoking the action of additional oxidants (e.g., reactive halogens.) The observed ocean flux of DMS averaged 3.1 (±1.5) μmol m−2 d−1, and generally decreased throughout the sunlit hours. Over the entire mission, the horizontal advection contribution to the overall budget was merely -0.1 ppt hr−1, indicating a mean atmospheric DMS gradient nearly perpendicular to the east-southeasterly trade winds and the chlorophyll gradient in the equatorial upwelling ocean. Nonetheless, horizontal advection was a significant term in the budget of any given flight, ranging from −1.2 to 2.5 ppt hr−1 , indicating a patchy and variable surface seawater DMS distribution, and thus needs to be accounted for in budget studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-07-07
    Description: In order to examine energy partitioning and CO2 exchange over a steppe prairie in Inner Mongolia, China, fluxes of moisture, heat and CO2 in the surface layer from June 2007 through June 2008 were calculated using the eddy covariance method. The study site was homogenous and approximately 1500 m×1500 m in size. Seasonal and diurnal variations in radiation components, energy components and CO2 fluxes are examined. Results show that all four radiation components changed seasonally, resulting in a seasonal variation in net radiation. The radiation components also changed diurnally. Winter surface albedo was higher than summer surface albedo because during winter the snow-covered surface increased the surface albedo. The seasonal variations in both sensible heat and CO2 fluxes were stronger than those of latent heat and soil heat fluxes. Sensible heat flux was the main consumer of available energy for the entire experimental period. The energy imbalance problem was encountered and the causes are analyzed.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-03-06
    Description: In order to examine energy partitioning and CO2 exchange over a steppe prairie in Inner Mongolia, China, fluxes of moisture, heat and CO2 in the surface layer from June 2007 through June 2008 were calculated using the eddy covariance method. The study site was homogenous and approximately 1500 m×1500 m in size. Seasonal and diurnal variations in radiation components, energy components and CO2 fluxes are examined. Results show that all four radiation components changed seasonally, resulting in a seasonal variation in net radiation. The radiation components also changed diurnally. Winter surface albedo was higher than summer surface albedo because during winter the snow-covered surface increased the surface albedo. The seasonal variations in both sensible heat and CO2 fluxes were stronger than those of latent heat and soil heat fluxes. This implies that both sensible heat and CO2 fluxes may be more significant climate signals than latent heat and soil fluxes. Sensible heat flux was the main consumer of available energy for the entire experimental period. The energy imbalance problem was encountered and the causes are analyzed.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-04-29
    Description: Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective to the night-time stable boundary layer, still raises several scientific issues. This phase of the diurnal cycle is challenging from both modeling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective regime, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of integrated instrument platforms including full-size aircraft, remotely piloted aircraft systems (RPAS), remote sensing instruments, radiosoundings, tethered balloons, surface flux stations, and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observations from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, like new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the residual layer of the previous day, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and evidenced the evolution of the turbulence characteristic lengthscales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-09-30
    Description: A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents) that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-06-25
    Description: The lack of adequate near-surface observations of the stable atmospheric boundary layer spatial structure motivated the development of an instrumented car for mobile turbulence measurements. The calibration and validation of the car measurements are performed using controlled field experiments and a comparison with an instrumented tower. The corrections required to remove the effects of the car motion are shown to be smaller and simpler than the corrections for research aircraft measurements. A car can therefore satisfactorily measure near-surface turbulence using relatively low-cost equipment. Other natural advantages of a car, such as the ability to drive on any road at any time of day or night and follow the terrain slope, as well as its low cost of operation, make it applicable to observations of a variety of flow regimes that cannot be achieved with the usual platforms, such as research aircraft or networks of flux towers.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-01-09
    Description: The global positioning system (GPS) radio occultation (RO) method is a relatively new technique for taking atmospheric measurements for use in both weather and climate studies. As such, this technique needs to be evaluated for all parts of the globe. Here, we present an extensive evaluation of the performance of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) GPS RO observations of the Southern Ocean boundary layer. The two COSMIC products used here are the "wetPrf" product, which is based on 1-D variational analysis with European Centre for Medium-Range Weather Forecasts (ECMWF), and the "atmPrf" product, which contains the raw measurements from COSMIC. A direct comparison of temporally and spatially co-located COSMIC profiles and high resolution radiosonde profiles from Macquarie Island (54.62° S, 158.85° E) highlights weaknesses in the ability of both COSMIC products to identify the boundary layer structure, as identified by break points in the refractivity profile. In terms of reproducing the temperature and moisture profile in the lowest 2.5 km, the "wetPrf" COSMIC product does not perform as well as an analysis product from the ECMWF. A further statistical analysis is performed on a large number of COSMIC profiles in a region surrounding Macquarie Island. This indicates that, statistically, COSMIC performs well at capturing the heights of main and secondary break points. However, the frequency of break points detected is lower than the radiosonde profiles suggest, but this could be simply due to the long horizontal averaging in the COSMIC measurements. There is also a weak seasonal cycle in the boundary layer height similar to that observed in the radiosonde data, providing some confidence in the ability of COSMIC to detect an important boundary layer variable.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...