ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-09-17
    Description: This study examined the estimation accuracy of NOx emissions over East Asia with particular focus on North China and South Korea due to their strong source (North China)-receptor (South Korea) relationship. In order to determine contributions of North China emissions to South Korean air quality accurately, it is important to examine the accuracy of the emission inventories of both regions. In this study, NO2 columns from the US EPA Models-3/CMAQ model simulations carried out using the 2001 ACE-ASIA (Asia Pacific Regional Aerosol Characterization Experiment) emission inventory over East Asia were compared with the GOME-derived NO2 columns. There were large discrepancies between the CMAQ-predicted and GOME-derived NO2 columns in the fall and winter seasons. In particular, while the CMAQ-predicted NO2 columns produced larger values than the GOME-derived NO2 columns over South Korea (receptor region) for all four seasons, the CMAQ-predicted NO2 columns produced smaller values than the GOME-derived NO2 columns over North China (source region) for all seasons with the exception of summer. It is believed that there might be some estimation error in the NOx emissions as well as large uncertainty in NOx loss rates over North China and South Korea. Regarding the latter, this study further focused on the biogenic VOC emissions that were strongly coupled with NOx chemistry in East Asia. It was found that the rates of NOx loss determined by CMAQ modeling studies might be significantly low due to the possible overestimation of biogenic isoprene emissions during summer, particularly in China. In addition, due to the possible overestimation of isoprene emissions, the CMAQ-modeled NO2/NOx ratios might show an incorrectly high level, compared with the actual NO2/NOx ratios. In addition to the retarded NOx chemical loss rates and overestimated NO2/NOx ratios, the omission of soil NOx emissions over North China during summer can lead to an underestimation of NOx emissions over North China during summer. Overall, it is estimated that the NOx emissions in North China are underestimated possibly by ~50% over an entire year. In order to confirm the uncertainty in NOx emissions, the NOx emission over South Korea was further investigated using the ACE-ASIA inventory, REAS (Regional Emission inventory in ASia) and CAPSS (Clean Air Policy Support System) by NIER (National Institute of Environmental Research) in Korea. The NOx emissions from ACE-ASIA and the REAS inventories appear to be approximately 2 times larger for mega-cities in Korea than that from the CAPSS inventory. In contrast, the NOx emissions of ACE-ASIA and REAS inventories are only 10% smaller for North China than the recently-estimated "date-back" ANL (Argonne National Laboratory) inventory. A comparison between the CMAQ-predicted and GOME-derived NO2 columns indicated that both the ACE-ASIA and REAS inventories have some uncertainty in NOx emissions over North China (A) and South Korea (C), which can lead to some error in modeling the formation of ozone and secondary aerosols in South Korea and North China.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-02-11
    Description: In this study, NO2 columns from the US EPA Models-3/CMAQ model simulations carried out using the 2001 ACE-ASIA (Asia Pacific Regional Aerosol Characterization Experiment) emission inventory over East Asia were compared with the GOME-derived NO2 columns. There were large discrepancies between the CMAQ-predicted and GOME-derived NO2 columns in the fall and winter seasons. In particular, while the CMAQ-predicted NO2 columns produced larger values than the GOME-derived NO2 columns over South Korea for all four seasons, the CMAQ-predicted NO2 columns produced smaller values than the GOME-derived NO2 columns over North China for all seasons with the exception of summer (summer anomaly). It is believed that there might be some error in the NOx emission estimates as well as uncertainty in the NOx chemical loss rates over North China and South Korea. Regarding the latter, this study further focused on the biogenic VOC (BVOC) emissions that were strongly coupled with NOx chemistry during summer in East Asia. This study also investigated whether the CMAQ-modeled NO2/NOx ratios with the possibly overestimated isoprene emissions were higher than those with reduced isoprene emissions. Although changes in both the NOx chemical loss rates and NO2/NOx ratios from CMAQ-modeling with the different isoprene emissions affected the CMAQ-modeled NO2 levels, the effects were found to be limited, mainly due to the low absolute levels of NO2 in summer. Seasonal variations of the NOx emission fluxes over East Asia were further investigated by a set of sensitivity runs of the CMAQ model. Although the results still exhibited the summer anomaly possibly due to the uncertainties in both NOx-related chemistry in the CMAQ model and the GOME measurements, it is believed that consideration of both the seasonal variations in NOx emissions and the correct BVOC emissions in East Asia are critical. Overall, it is estimated that the NOx emissions are underestimated by ~57.3% in North China and overestimated by ~46.1% in South Korea over an entire year. In order to confirm the uncertainty in NOx emissions, the NOx emissions over South Korea and China were further investigated using the ACE-ASIA, REAS (Regional Emission inventory in ASia), and CAPSS (Clean Air Policy Support System) emission inventories. The comparison between the CMAQ-calculated and GOME-derived NO2 columns indicated that both the ACE-ASIA and REAS inventories have some uncertainty in NOx emissions over North China and South Korea, which can also lead to some errors in modeling the formation of ozone and secondary aerosols in South Korea and North China.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-25
    Description: Plant functional type (PFT) distributions affect the results of biogenic emission modeling as well as O3 and PM simulations using chemistry-transport models (CTMs). This paper analyzes the variations of both surface biogenic VOC emissions and O3 concentrations due to changes in the PFT distributions in the Seoul Metropolitan Areas, Korea. Also, this paper attempts to provide important implications for biogenic emissions modeling studies for CTM simulations. MM5-MEGAN-SMOKE-CMAQ model simulations were implemented over the Seoul Metropolitan Areas in Korea to predict surface O3 concentrations for the period of 1 May to 31 June 2008. Starting from MEGAN biogenic emissions analysis with three different sources of PFT input data, US EPA CMAQ O3 simulation results were evaluated by surface O3 monitoring datasets and further considered on the basis of geospatial and statistical analyses. The three PFT datasets considered were "(1)KORPFT", developed with a region specific vegetation database; (2) CDP, adopted from US NCAR; and (3) MODIS, reclassified from the NASA Terra and Aqua combined land cover products. Comparisons of MEGAN biogenic emission results with the three different PFT data showed that broadleaf trees (BT) are the most significant contributor, followed by needleleaf trees (NT), shrub (SB), and herbaceous plants (HB) to the total biogenic volatile organic compounds (BVOCs). In addition, isoprene from BT and terpene from NT were recognized as significant primary and secondary BVOC species in terms of BVOC emissions distributions and O3-forming potentials in the study domain. Multiple regression analyses with the different PFT data (δO3 vs. δPFTs) suggest that KORPFT can provide reasonable information to the framework of MEGAN biogenic emissions modeling and CTM O3 predictions. Analyses of the CMAQ performance statistics suggest that deviations of BT areas can significantly affect CMAQ isoprene and O3 predictions. From further evaluations of the isoprene and O3 prediction results, we explored the PFT area-loss artifact that occurs due to geographical disparity between the PFT and leaf area index distributions, and can cause increased bias in CMAQ O3. Thus, the PFT-loss artifact must be a source of limitation in the MEGAN biogenic emission modeling and the CTM O3 simulation results. Time changes of CMAQ O3 distributions with the different PFT scenarios suggest that hourly and local impacts from the different PFT distributions on occasional inter-deviations of O3 are quite noticeable, reaching up to 10 ppb. Exponentially diverging hourly BVOC emissions and O3 concentrations with increasing ambient temperature suggest that the use of representative PFT distributions becomes more critical for O3 air quality modeling (or forecasting) in support of air quality decision-making and human health studies.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-07-22
    Description: Plant functional type (PFT) distributions affect the results of biogenic emission modeling as well as O3 and particulate matter (PM) simulations using chemistry-transport models (CTMs). This paper analyzes the variations of both surface biogenic volatile organic compound (BVOC) emissions and O3 concentrations due to changes in the PFT distributions in the Seoul Metropolitan Areas, Korea. The Fifth-Generation NCAR/Pennsylvania State Meso-scale Model (MM5)/the Model of Emissions of Gases and Aerosols from Nature (MEGAN)/the Sparse Matrix Operator Kernel Emissions (SMOKE)/the Community Multiscale Air Quality (CMAQ) model simulations were implemented over the Seoul Metropolitan Areas in Korea to predict surface O3 concentrations for the period of 1 May to 31 June 2008. Starting from a performance check of CTM predictions, we consecutively assessed the effects of PFT area deviations on the MEGAN BVOC and CTM O3 predictions, and we further considered the basis of geospatial and statistical analyses. The three PFT data sets considered were (1) the Korean PFT, developed with Korea-specific vegetation database; (2) the CDP PFT, adopted from the community data portal (CDP) of US National Center for Atmospheric Research in the United States (NCAR); (3) MODIS PFT, reclassified from the NASA Terra and Aqua combined land cover products. Although the CMAQ performance check reveals that all of the three different PFT data sets are applicable choices for regulatory modeling practice, noticeable primary data (i.e., PFT and Leaf Area Index (LAI)) was observed to be missing in many geographic locations. Based on the assessed effect of such missing data on CMAQ O3 predictions, we found that this missing data can cause spatially increased bias in CMAQ O3. Thus, it must be resolved in the near future to obtain more accurate biogenic emission and chemistry transport modeling results. Comparisons of MEGAN biogenic emission results with the three different PFT data showed that broadleaf trees (BTs) are the most significant contributor, followed by needleleaf trees (NTs), shrub (SB), and herbaceous plants (HBs) to the total BVOCs. In addition, isoprene from BTs and terpene from NTs were recognized as significant primary and secondary BVOC species in terms of BVOC emissions distributions and O3-forming potentials in the study domain. A geographically weighted regression analysis with locally compensated ridge (LCR-GWR) with the different PFT data (δO3 vs. δPFTs) suggests that addition of BT, SB, and NT areas can contribute to O3 increase, whereas addition of an HB area contributes to O3 decrease in the domain. Assessment results of the simulated spatial and temporal changes of O3 distributions with the different PFT scenarios reveal that hourly and local impacts from the different PFT distributions on occasional inter-deviations of O3 are quite noticeable, reaching up to 13 ppb. The simulated maximum 1 h O3 inter-deviations between different PFT scenarios have an asymmetric diurnal distribution pattern (low in the early morning, rising during the day, peaking at 05:00 p.m., and decreasing during the night) in the study domain. Exponentially diverging hourly BVOC emissions and O3 concentrations with increasing ambient temperature suggest that the use of different PFT distribution data requires much caution when modeling (or forecasting) O3 air quality in complicated urban atmospheric conditions in terms of whether uncertainties in O3 prediction results are expected to be mild or severe.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-11-08
    Description: Carbon tetrachloride (CCl4) has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CCl4 measurements and a 3-dimensional chemical transport model to estimate the interannual regional industrial emissions and seasonal global oceanic uptake of CCl4 for the period of 1996–2004. The Model of Atmospheric Transport and Chemistry (MATCH), driven by offline National Center for Environmental Prediction (NCEP) reanalysis meteorological fields, is used to simulate CCl4 mole fractions and calculate their sensitivities to regional sources and sinks using a finite difference approach. High frequency observations from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the Earth System Research Laboratory (ESRL) of the National Oceanic and Atmospheric Administration (NOAA) and low frequency flask observations are together used to constrain the source and sink magnitudes, estimated as factors that multiply the a priori fluxes. Although industry data imply that the global industrial emissions were substantially declining with large interannual variations, the optimized results show only small interannual variations and a small decreasing trend. The global surface CCl4 mole fractions were declining in this period because the CCl4 oceanic and stratospheric sinks exceeded the industrial emissions. Compared to the a priori values, the inversion results indicate substantial increases in industrial emissions originating from the South Asian/Indian and Southeast Asian regions, and significant decreases in emissions from the European and North American regions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-11-28
    Description: Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed domesticated and wild animals. The highly contagious nature of FMD is a reflection of the wide range of host species, the enormous quantities of virus liberated by infected animals, the range of excretions and secretions which can be infectious, the stability of the virus in the environment, the multiplicity of routes of infection and the very small doses of the virus that can initiate infection. One of the mechanisms of spread is the carriage of droplets and droplet nuclei exhaled in the breath of infected animals. Such spread can be rapid and extensive, and it is known in certain circumstances to have transmitted disease over a distance of several hundred kilometres. During the 2001 FMD epidemic in the United Kingdom (UK), atmospheric dispersion models were applied in real time in order to assess the potential for atmospheric dispersion of the disease. The operational value of such modelling is primarily to identify premises which may have been exposed so that the human resources for surveillance and disease control purposes are employed most effectively. The paper describes the combined modelling techniques and presents the results obtained of detailed analyses performed during the early stages of the UK 2001 epidemic. This paper investigates the potential for disease spread in relation to two outbreaks (Burnside Farm, Heddon-on-the-Wall and Prestwick Hall Farm, Ponteland, Northumberland). A separate paper (Gloster et al., 2002) provides a more detailed analysis of the airborne disease transmission in the vicinity of Burnside Farm. The combined results are consistent with airborne transmission of disease to livestock in the Heddon-on-the-Wall area. Local topography may have played a significant role in influencing the pattern of disease spread.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-02-06
    Description: The Ulleung Basin (UB), located in the southwestern part of the East/Japan Sea (EJS), is considered having an unusually high productivity for a~deep basin. Recently changes have been reported in physical, chemical, and in biological properties. Here we measured the primary and new productivities in the UB using a 13C-15N dual isotope tracer technique. Measurements took place every month for the first time throughout a year for a~better estimate of the annual primary production in the EJS. Temporal variations of temperature, salinity and density (σt) in the study area were highly seasonal as expected for an ocean in the temperate zone. Nutrient distributions reflected these seasonal fluctuations in the vertical structure of the water column. Diatoms were in general the most dominant phytoplankton ranging from 15.5 to 82.2% with an average of 42.0% (S.D. = ± 9.9%). Based on those average daily productivities from our monthly measurements, the annual primary, new, and regenerated production in the UB were 273.0 g C m−2 yr−1, 62.6 g N m−2 yr−1, and 48.7 g N m−2 yr−1, respectively. Our estimated high f-ratio (0.59) in the UB, indicated that the predominant nitrogen source for primary production was nitrate. This is comparable with the nitrogen source in a productive coastal-upwelling region. New carbon production by phytoplankton is estimated as 212.8 g C m−2 yr−1 (S.D. = ± 9.7 g C m−2 yr−1) which indicates that a large portion (78%) of total annual primary production might potentially be exported from the diatom-dominated euphotic zone to a deeper zone in the UB. Further intense integrated field observations will be necessary to improve our understanding of the current marine ecosystem in the UB as an important biological production area in the EJS.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-08-20
    Description: Lake Ohrid (Macedonia/Albania) is an ancient lake with a unique biodiversity and a site of global significance for investigating the influence of climate, geological and tectonic events on the generation of endemic populations. Here, we present oxygen (δ18O) and carbon (δ13C) isotope data on carbonate from the upper ca. 248 m of sediment cores recovered as part of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) project, covering the past 640 ka. Previous studies on short cores from the lake (up to 15 m, 〈 140 ka) have indicated the Total Inorganic Carbon (TIC) content of sediments to be highly sensitive to climate change over the last glacial–interglacial cycle, comprising abundant endogenic calcite through interglacials and being almost absent in glacials, apart from discrete bands of early diagenetic authigenic siderite. Isotope measurements on endogenic calcite (δ18Oc and δ13Cc) reveal variations both between and within interglacials that suggest the lake has been subject to hydroclimate fluctuations on orbital and millennial timescales. We also measured isotopes on authigenic siderite (δ18Os and δ13Cs) and, with the δ18OCc and δ18Os, reconstruct δ18O of lakewater (δ18Olw) through the 640 ka. Overall, glacials have lower δ18Olw when compared to interglacials, most likely due to cooler summer temperatures, a higher proportion of winter precipitation (snowfall), and a reduced inflow from adjacent Lake Prespa. The isotope stratigraphy suggests Lake Ohrid experienced a period of general stability through Marine Isotope Stage (MIS) 15 to MIS 13, highlighting MIS 14 as a particularly warm glacial, and was isotopically freshest during MIS 9. After MIS 9, the variability between glacial and interglacial δ18Olw is enhanced and the lake became increasingly evaporated through to present day with MIS 5 having the highest average δ18Olw. Our results provide new evidence for long-term climate change in the northern Mediterranean region, which will form the basis to better understand the influence of major environmental events on biological evolution within the lake.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-08-18
    Description: Most landslides in Korea are classified as shallow landslides with an average depth of less than 2 m. These shallow landslides are associated with the advance of a wetting front in the unsaturated soil due to rainfall infiltration, which results in an increase in water content and a reduction in the matric suction in the soil. Therefore, this study presents a modified equation of infinite slope stability analysis based on the concept of the saturation depth ratio to analyze the slope stability change associated with the rainfall on a slope. A rainfall infiltration test in unsaturated soil was performed using a column to develop an understanding of the effect of the saturation depth ratio following rainfall infiltration. The results indicated that the rainfall infiltration velocity due to the increase in rainfall in the soil layer was faster when the rainfall intensity increased. In addition, the rainfall infiltration velocity tends to decrease with increases in the unit weight of soil. The proposed model was applied to assess its feasibility and to develop a regional landslide susceptibility map using a geographic information system (GIS). For that purpose, spatial databases for input parameters were constructed and landslide locations were obtained. In order to validate the proposed approach, the results of the proposed approach were compared with the landslide inventory using a ROC (receiver operating characteristics) graph. In addition, the results of the proposed approach were compared with the previous approach used: a steady-state hydrological model. Consequently, the approach proposed in this study displayed satisfactory performance in classifying landslide susceptibility and showed better performance than the steady-state approach.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-28
    Description: Most landslides in Korea are classified as shallow landslides with an average depth of less than 2 m. These shallow landslides are associated with the advance of a wetting front in the unsaturated soil due to rainfall infiltration, which results in an increase in water content and a reduction in the matric suction in the soil. Therefore, this study presents a modified equation of infinite slope stability analysis based on the concept of the saturation depth ratio to analyze the slope stability change associated with the rainfall on a slope. A rainfall infiltration test in unsaturated soil was performed using a column to develop an understanding of the effect of the saturation depth ratio following rainfall infiltration. The results indicated that the rainfall infiltration velocity due to the increase in rainfall in the soil layer was faster when the rainfall intensity increased. In addition, the rainfall infiltration velocity tends to decrease with increases in the unit weight of soil. The proposed model was applied to assess its feasibility and to develop a regional landslide susceptibility map using a Geographic Information System (GIS). For that purpose, the spatial databases for input parameters were constructed and landslide locations were obtained. In order to validate the proposed approach, the results of the proposed approach were compared with the landslide inventory using ROC (Receiver Operating Characteristics) graph. In addition, the results of the proposed approach were compared with the previous approach used steady state hydrological model. Consequently, the approach proposed in this study displayed satisfactory performance in classifying landslide susceptibility and showed better performance than the steady state approach.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...