ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-03
    Description: Benthic fluxes of dissolved silicon (Si) from sediments into the water column are driven by the dissolution of biogenic silica (bSiO2) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of silicon dissolved in sediment pore fluids, such that the determination of pore fluid δ30Si values can help to decipher the complex Si cycle in surface sediments. In this study, the δ30Si signatures of pore fluids and bSiO2 in the Guaymas Basin (Gulf of California) were analyzed, which is characterized by high bSiO2 accumulation and hydrothermal activity. The δ30Si signatures were investigated in the deep basin, in the vicinity of a hydrothermal vent field, and at an anoxic site located within the pronounced oxygen minimum zone (OMZ). The pore fluid δ30Sipf signatures differ significantly depending on the ambient conditions. Within the basin, δ30Sipf is essentially uniform, averaging +1.2±0.1 ‰ (1 SD). Pore fluid δ30Sipf values from within the OMZ are significantly lower (0.0±0.5 ‰, 1 SD), while pore fluids close to the hydrothermal vent field are higher (+2.0±0.2 ‰, 1SD). Reactive transport modeling results show that the δ30Sipf is mainly controlled by silica dissolution (bSiO2 and terrigenous phases) and Si precipitation (authigenic aluminosilicates). Precipitation processes cause a shift to high pore fluid δ30Sipf signatures, most pronounced at the hydrothermal site. Within the OMZ, however, additional dissolution of isotopically depleted Si minerals (e.g., clays) facilitated by high mass accumulation rates of terrigenous material (MARterr) is required to promote the low δ30Sipf signatures, while precipitation of authigenic aluminosilicates seems to be hampered by high water ∕ rock ratios. Guaymas OMZ δ30Sipf values are markedly different from those of the Peruvian OMZ, the only other marine OMZ setting where Si isotopes have been investigated to constrain early diagenetic processes. These differences highlight the fact that δ30Sipf signals in OMZs worldwide are not alike and each setting can result in a range of δ30Sipf values as a function of the environmental conditions. We conclude that the benthic silicon cycle is more complex than previously thought and that additional Si isotope studies are needed to decipher the controls on Si turnover in marine sediment and the role of sediments in the marine silicon cycle.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-12
    Description: Eastern boundary upwelling systems (EBUS) are among the most productive marine ecosystems on Earth. The production of organic material is fueled by upwelling of nutrient-rich deep waters and high incident light at the sea surface. However, biotic and abiotic factors can modify surface production and related biogeochemical processes. Determining these factors is important because EBUS are considered hotspots of climate change, and reliable predictions of their future functioning requires understanding of the mechanisms driving the biogeochemical cycles therein. In this field experiment, we used in situ mesocosms as tools to improve our mechanistic understanding of processes controlling organic matter cycling in the coastal Peruvian upwelling system. Eight mesocosms, each with a volume of ∼55 m3, were deployed for 50 d ∼6 km off Callao (12∘ S) during austral summer 2017, coinciding with a coastal El Niño phase. After mesocosm deployment, we collected subsurface waters at two different locations in the regional oxygen minimum zone (OMZ) and injected these into four mesocosms (mixing ratio ≈1.5 : 1 mesocosm: OMZ water). The focus of this paper is on temporal developments of organic matter production, export, and stoichiometry in the individual mesocosms. The mesocosm phytoplankton communities were initially dominated by diatoms but shifted towards a pronounced dominance of the mixotrophic dinoflagellate (Akashiwo sanguinea) when inorganic nitrogen was exhausted in surface layers. The community shift coincided with a short-term increase in production during the A. sanguinea bloom, which left a pronounced imprint on organic matter C : N : P stoichiometry. However, C, N, and P export fluxes did not increase because A. sanguinea persisted in the water column and did not sink out during the experiment. Accordingly, export fluxes during the study were decoupled from surface production and sustained by the remaining plankton community. Overall, biogeochemical pools and fluxes were surprisingly constant for most of the experiment. We explain this constancy by light limitation through self-shading by phytoplankton and by inorganic nitrogen limitation which constrained phytoplankton growth. Thus, gain and loss processes remained balanced and there were few opportunities for blooms, which represents an event where the system becomes unbalanced. Overall, our mesocosm study revealed some key links between ecological and biogeochemical processes for one of the most economically important regions in the oceans.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus
    In:  [Talk] In: EGU General Assembly 2011, 03.04.-08.04.2011, Vienna, Austria ; p. 6081 .
    Publication Date: 2012-07-06
    Description: EGU2011-6081 Natural stable isotopes are a powerful tool in marine sciences to investigate biological processes, such as present and past nutrient utilization. In this study we present the first dissolved silicon isotope data in the upwelling area off Peru, where one of the world’s largest Oxygen Minimum Zones (OMZ) is located. Silicon is the most important component required for phytoplankton (diatom) growth, which dominates primary productivity in this region. Stable Si isotopes are fractionated during diatom growth in that the lighter Si isotopes are preferentially incorporated into diatoms with a fractionation factor of -1.1 promille. The Si isotope composition of dissolved silicic acid of the corresponding surface waters is therefore left isotopically heavier. The Si isotope composition, 30Si/28Si, is expressed as δ30Si values, which stand forh deviations from a given standard (NBS28). Investigation of the dissolved seawater Si isotope composition thus provides a measure for the utilization and, combined with information on the Si isotope composition of the water masses upwelling off Peru, it is a measure for the supply pathways of Si to the coastal upwelling centres. Surface waters on the shelf off Peru are mainly fed by the Equatorial Undercurrent, which mainly consists of waters originating from the western and Central Pacific and which has a characteristic δ30Si of +1.5 promille. In areas and during phases of intense upwelling the fractionation of Si isotopes was observed to be weaker due to upwelling-driven supply of less fractionated Si (δ30Si = 1.7 promille, from water depths of around 100-150 m, whereas under weak upwelling conditions fractionation is higher (δ30Si ~3 promille due to a more complete utilization of the available dissolved silicate. The distribution of dissolved δ30Si correlates strongly with particulate biogenic silicate (opal) concentrations in that highest opal concentrations in the surface waters show the lowest δ30Si values thus strongest upwelling intensity. The most extreme δ30Si values in surface waters (δ30Si = 4.5 promille are observed offshore where silicic acid concentrations are nearly zero. Furthermore we compare the δ30Si data with the dissolved nitrogen isotope distribution, which in addition to nitrate utilization is mainly influenced by denitrification and annamox processes in the OMZ. Combined silicon and nitrogen isotope compositions can thus help to disentangle different fractionation processes within the nitrogen cycle.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...