ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-09-23
    Description: Monitoring soil moisture is still a challenge: it varies strongly in space and time and at various scales while conventional sensors typically suffer from small spatial support. With a sensor footprint up to several hectares, cosmic-ray neutron sensing (CRNS) is a modern technology to address that challenge. So far, the CRNS method has typically been applied with single sensors or in sparse national-scale networks. This study presents, for the first time, a dense network of 24 CRNS stations that covered, from May to July 2019, an area of just 1 km2: the pre-Alpine Rott headwater catchment in Southern Germany, which is characterized by strong soil moisture gradients in a heterogeneous landscape with forests and grasslands. With substantially overlapping sensor footprints, this network was designed to study root-zone soil moisture dynamics at the catchment scale. The observations of the dense CRNS network were complemented by extensive measurements that allow users to study soil moisture variability at various spatial scales: roving (mobile) CRNS units, remotely sensed thermal images from unmanned areal systems (UASs), permanent and temporary wireless sensor networks, profile probes, and comprehensive manual soil sampling. Since neutron counts are also affected by hydrogen pools other than soil moisture, vegetation biomass was monitored in forest and grassland patches, as well as meteorological variables; discharge and groundwater tables were recorded to support hydrological modeling experiments. As a result, we provide a unique and comprehensive data set to several research communities: to those who investigate the retrieval of soil moisture from cosmic-ray neutron sensing, to those who study the variability of soil moisture at different spatiotemporal scales, and to those who intend to better understand the role of root-zone soil moisture dynamics in the context of catchment and groundwater hydrology, as well as land–atmosphere exchange processes. The data set is available through the EUDAT Collaborative Data Infrastructure and is split into two subsets: https://doi.org/10.23728/b2share.282675586fb94f44ab2fd09da0856883 (Fersch et al., 2020a) and https://doi.org/10.23728/b2share.bd89f066c26a4507ad654e994153358b (Fersch et al., 2020b).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-06
    Description: A comprehensive hydro-sedimentological dataset for the Isábena catchment, NE Spain, for the period 2010–2016 is presented to analyse water and sediment fluxes in a Mediterranean meso-scale catchment. The dataset includes rainfall data from twelve rain gauges distributed within the study area complemented by meteorological data of twelve official meteo-stations. It comprises discharge data derived from water stage measurements as well as suspended sediment concentrations (SSC) at six gauging stations of the River Isábena and its sub-catchments. Soil spectroscopic data from 351 suspended sediment samples and 152 soil samples were collected to characterize sediment source regions and sediment properties via fingerprinting analyses. The Isábena catchment (445 km2) is located in the Southern Central Pyrenees ranging from 450 m to 2,720 m a.s.l., together with a pronounced topography this leads to distinct temperature and precipitation gradients. The River Isábena shows marked discharge variations and high sediment yields causing severe siltation problems in the downstream Barasona Reservoir. Main sediment source are badland areas located on Eocene marls that are well connected to the river network. The dataset features a wide set of parameters in a high spatial and temporal resolution suitable for advanced process understanding of water and sediment fluxes, their origin and connectivity, sediment budgeting and for evaluating and further developing hydro-sedimentological models in Mediterranean meso-scale mountainous catchments. The dataset is available at http://doi.org/10.5880/fidgeo.2017.003.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-12-06
    Description: Temporal variations of surface water volume over inundated areas of the Lower Ob' Basin in Siberia, one of the largest contributor of freshwater to the Arctic Ocean, are estimated using combined observations from a multisatellite inundation dataset and water levels over rivers and floodplains derived from the TOPEX/POSEIDON (T/P) radar altimetry. We computed time-series of monthly maps of surface water volume over the common period of available T/P and multisatellite data (1993–2004). The results exhibit interannual variabilities similar to precipitation estimates and river discharge observations. This study also presents monthly estimates of groundwater and permafrost mass anomalies during 2003–2004 based on a synergistic analysis of multisatellite observations and hydrological models. Water stored in the soil is isolated from the total water storage measured by GRACE when removing the contributions of both the surface reservoir, derived from satellite imagery and radar altimetry, and the snow estimated by inversion of GRACE measurements. The time variations of groundwater and permafrost are then obtained when removing the water content of the root zone reservoir simulated by hydrological models.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-09-01
    Description: Water storage is the fundamental state variable of hydrological systems. However, comprehensive data on total water storage changes (WSC) are practically inaccessible by hydrological measurement techniques at the field or catchment scale, and hydrological models are highly uncertain in representing the storage term due to the lack of adequate validation or calibration data. In this study, we assess the benefit of temporal gravimeter measurements for modelling WSC at the field scale. A simple conceptual hydrological model is calibrated and evaluated against records of a superconducting gravimeter (SG), soil moisture, and groundwater time series. The model is validated against independently estimated WSC based on lysimeter measurements. Using gravimeter data as a calibration constraint improves the model results substantially in terms of predictive capability and variation of the behavioural model runs. Thanks to their capacity to integrate over different storage components and a larger area, gravimeters provide information on total WSC that can be used to constrain the overall status of the hydrological system in a model. The general problem of specifying the internal model structure or individual parameter sets can, however, not be solved with gravimeters alone.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-07-02
    Description: In data sparse mountainous regions it is difficult to derive areal precipitation estimates. In addition, their evaluation by cross validation can be misleading if the precipitation gauges are not in representative locations in the catchment. This study aims at the evaluation of precipitation estimates in data sparse mountainous catchments. In particular, it is first tested whether monthly precipitation fields from downscaled reanalysis data can be used for interpolating gauge observations. Secondly, precipitation estimates from this and other methods are evaluated by comparing simulated and observed discharge, which has the advantage that the data are evaluated at the catchment scale. This approach is extended here in order to differentiate between errors in the overall bias and the temporal dynamics, and by taking into account different sources of uncertainties. The study area includes six headwater catchments of the Karadarya Basin in Central Asia. Generally the precipitation estimate based on monthly precipitation fields from downscaled reanalysis data showed an acceptable performance, comparable to another interpolation method using monthly precipitation fields from multi-linear regression against topographical variables. Poor performance was observed in only one catchment, probably due to mountain ridges not resolved in the model orography of the regional climate model. Using two performance criteria for the evaluation by hydrological modelling allowed a more informed differentiation between the precipitation data and showed that the precipitation data sets mostly differed in their overall bias, while the performance with respect to the temporal dynamics was similar. Our precipitation estimates in these catchments are considerably higher than those from continental- or global-scale gridded data sets. The study demonstrates large uncertainties in areal precipitation estimates in these data sparse mountainous catchments. In such regions with only very few precipitation gauges but high spatial variability of precipitation, important information for evaluating precipitation estimates may be gained by hydrological modelling and a comparison to observed discharge.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2001-06-30
    Description: Rainfall data of high temporal resolution are required in a multitude of hydrological applications. In the present paper, a temporal rainfall disaggregation model is applied to convert daily time series into an hourly resolution. The model is based on the principles of random multiplicative cascade processes. Its parameters are dependent on (1) the volume and (2) the position in the rainfall sequence of the time interval with rainfall to be disaggregated. The aim is to compare parameters and performance of the model between two contrasting climates with different rainfall generating mechanisms, a semi-arid tropical (Brazil) and a temperate (United Kingdom) climate. In the range of time scales studied, the scale-invariant assumptions of the model are approximately equally well fulfilled for both climates. The model parameters differ distinctly between climates, reflecting the dominance of convective processes in the Brazilian rainfall and of advective processes associated with frontal passages in the British rainfall. In the British case, the parameters exhibit a slight seasonal variation consistent with the higher frequency of convection during summer. When applied for disaggregation, the model reproduces a range of hourly rainfall characteristics with a high accuracy in both climates. However, the overall model performance is somewhat better for the semi-arid tropical rainfall. In particular, extreme rainfall in the UK is overestimated whereas extreme rainfall in Brazil is well reproduced. Transferability of parameters in time is associated with larger uncertainty in the semi-arid climate due to its higher interannual variability and lower percentage of rainy intervals. For parameter transferability in space, no restrictions are found between the Brazilian stations whereas in the UK regional differences are more pronounced. The overall high accuracy of disaggregated data supports the potential usefulness of the model in hydrological applications. Keywords: Rainfall, temporal disaggregation, random cascade, scaling, semi-arid, temperate climate.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-01-11
    Description: The aim of this study is to provide an improved global simulation of continental water storage variations by calibrating the WaterGAP Global Hydrology Model (WGHM) for 28 of the largest river basins worldwide. Five years (January 2003–December 2007) of satellite-based estimates of the total water storage changes from the GRACE mission were combined with river discharge data in a multi-objective calibration framework that uses the most sensitive WGHM model parameters. The uncertainty and significance of the calibration results were analysed with respect to errors in the observation data. An independent simulation period (January 2008–December 2008) was used for validation. The contribution of single storage compartments to the total water budget before and after calibration was analysed in detail. A multi-objective improvement of the model states was obtained for most of the river basins, with mean error reductions of up to 110 km3/month for discharge and up to 24 mm of a water mass equivalent column for total water storage changes, such as for the Amazon basin. Errors in the phase and signal variability of seasonal water mass changes were reduced. The calibration is shown to primarily affect soil water storage in most river basins. The variability of groundwater storage variations was reduced on a global scale after calibration. Structural model errors were identified from a small contribution of surface water storage including wetlands in river basins with large inundation areas, such as the Amazon or the Mississippi. Our results demonstrate the value of both the GRACE data and the multi-objective calibration approach for improving large-scale hydrological simulations, and they provide a starting-point for improving model structures. The integration of complimentary observation data to further constrain the simulation of single storage compartments is encouraged.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-07-06
    Description: This study contributes to an improved global simulation of continental water storage variations by calibrating the WaterGAP Global Hydrology Model (WGHM) for 28 of the largest river basins worldwide. Five years (01/2003–12/2007) of satellite-based estimates of total water storage changes from the GRACE mission are combined with river discharge data in a multi-objective calibration framework of the most sensitive WGHM model parameters. The uncertainty and significance of the calibration results is analyzed with respect to errors in the observation data. An independent simulation period (01/2008–12/2008) is used for validation. The contribution of single storage compartments to the total water budget before and after calibration is analyzed in detail. A multi-objective improvement of the model states is obtained for most of the river basins, with mean error reductions up to 110 km3/month for discharge and up to 24 mm of a water mass equivalent column for total water storage changes, as for the Amazon basin. Errors in phase and signal variability of seasonal water mass changes are reduced. The calibration is shown to primarily affect soil water storage in most river basins. The variability of groundwater storage variations is reduced at the global scale after calibration. Structural model errors are identified from a small contribution of surface water storage including wetlands in river basins with large inundation areas, such as the Amazon or the Mississippi. The results demonstrate the value of GRACE data and the multi-objective calibration approach for improvements of large-scale hydrological simulations, as they constitute a starting-point for improvements of model structure. The integration of complimentary observation data to further constrain the simulation of single storage compartments is encouraged.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-09-20
    Description: In data sparse regions, as in many mountainous catchments, it is a challenge to generate suitable precipitation input fields for hydrological modelling, as station data do not provide enough information to derive areal precipitation estimates. This study presents a method using the spatial variation of precipitation from downscaled reanalysis data for the interpolation of gauge observations. The second aim of this study is the evaluation of different precipitation estimates by hydrological modelling. Study area is the Karadarya catchment in Central Asia (11 700 km2). ERA-40 reanalysis data are downscaled with the regional climate model Weather Research and Forecasting Model (WRF). Precipitation data from gauge observations are interpolated (i) using monthly accumulated WRF precipitation data, (ii) using monthly fields from multiple linear regression against topographical variables and (iii) with the inverse distance approach. These precipitation data sets are also compared to (iv) the direct use of the precipitation output from the WRF downscaled ERA-40 data and (v) precipitation from the APHRODITE data set. Our study suggests that using monthly fields from downscaled reanalysis data can be a good approach for the interpolation of station data in data sparse mountainous regions. Compared to mean annual precipitation from continental and global scale gridded data sets our precipitation estimates for the study area are considerably higher. The introduction of a calibrated precipitation bias factor for the comparison of different precipitation estimates by hydrological modelling allows for a more informed differentiation with regard to the temporal dynamics, on the one hand, and the overall bias, on the other hand. Uncertainty and sensitivity analyses suggest that our results are robust against uncertainties in the calibration parameters, other model parameters and inputs, and the selected calibration period.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-04-01
    Description: Water storage is the fundamental state variable of hydrological systems. However, comprehensive data on total water storage changes (WSC) are practically inaccessible by hydrological measurement techniques at the field or catchment scale, and hydrological models are highly uncertain in representing the storage term due to the lack of adequate validation or calibration data. In this study, we assess the benefit of temporal gravimeter measurements for modelling WSC at the field scale. A simple conceptual hydrological model is calibrated and evaluated against records of a superconducting gravimeter, soil moisture and groundwater time series. The model is validated against independently estimated WSC data. Using gravimeter data as a calibration constraint improves the model results substantially in terms of predictive capability and variation of the behavioural model runs. Thanks to their capacity to integrate over different storage components and a larger area, gravimeters provide generalised information on total WSC that is useful to constrain the overall status of the hydrological system in a model. The general problem of specifying the internal model structure or individual parameter sets can, however, not be solved with gravimeters alone.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...