ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-22
    Description: Southern West Africa (SWA) is an African pollution hotspot but a relatively poorly sampled region of the world. We present an overview of in situ aerosol optical measurements collected over SWA in June and July 2016 as part as of the DACCIWA (Dynamics-Aerosol-Chemistry-Clouds Interactions in West Africa) airborne campaign. The aircraft sampled a wide range of air masses, including anthropogenic pollution plumes emitted from the coastal cities, long-range transported biomass burning plumes from central and southern Africa and dust plumes from the Sahara and Sahel region, as well as mixtures of these plumes. The specific objective of this work is to characterize the regional variability of the vertical distribution of aerosol particles and their spectral optical properties (single scattering albedo: SSA, asymmetry parameter, extinction mass efficiency, scattering Ångström exponent and absorption Ångström exponent: AAE). The first findings indicate that aerosol optical properties in the planetary boundary layer were dominated by a widespread and persistent biomass burning loading from the Southern Hemisphere. Despite a strong increase in aerosol number concentration in air masses downwind of urban conglomerations, spectral SSA were comparable to the background and showed signatures of the absorption characteristics of biomass burning aerosols. In the free troposphere, moderately to strongly absorbing aerosol layers, dominated by either dust or biomass burning particles, occurred occasionally. In aerosol layers dominated by mineral dust particles, SSA varied from 0.81 to 0.92 at 550 nm depending on the variable proportion of anthropogenic pollution particles externally mixed with the dust. For the layers dominated by biomass burning particles, aerosol particles were significantly more light absorbing than those previously measured in other areas (e.g. Amazonia, North America), with SSA ranging from 0.71 to 0.77 at 550 nm. The variability of SSA was mainly controlled by variations in aerosol composition rather than in aerosol size distribution. Correspondingly, values of AAE ranged from 0.9 to 1.1, suggesting that lens-coated black carbon particles were the dominant absorber in the visible range for these biomass burning aerosols. Comparison with the literature shows a consistent picture of increasing absorption enhancement of biomass burning aerosol from emission to remote location and underscores that the evolution of SSA occurred a long time after emission. The results presented here build a fundamental basis of knowledge about the aerosol optical properties observed over SWA during the monsoon season and can be used in climate modelling studies and satellite retrievals. In particular and regarding the very high absorbing properties of biomass burning aerosols over SWA, our findings suggest that considering the effect of internal mixing on absorption properties of black carbon particles in climate models should help better assess the direct and semi-direct radiative effects of biomass burning particles.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-12-16
    Description: Vast stretches of agricultural land in southern and central Africa are burnt between June and September each year, which releases large quantities of aerosol into the atmosphere. The resulting smoke plumes are carried west over the Atlantic Ocean at altitudes between 2 and 4 km. As only limited observational data in West Africa have existed until now, whether this pollution has an impact at lower altitudes has remained unclear. The Dynamics-aerosol-chemistry-cloud interactions in West Africa (DACCIWA) aircraft campaign took place in southern West Africa during June and July 2016, with the aim of observing gas and aerosol properties in the region in order to assess anthropogenic and other influences on the atmosphere. Results presented here show that a significant mass of aged accumulation mode aerosol was present in the southern West African monsoon layer, over both the ocean and the continent. A median dry aerosol concentration of 6.2 µg m−3 (standard temperature and pressure, STP) was observed over the Atlantic Ocean upwind of the major cities, with an interquartile range from 5.3 to 8.0 µg m−3. This concentration increased to a median of 11.1 µg m−3 (8.6 to 15.7 µg m−3) in the immediate outflow from cities. In the continental air mass away from the cities, the median aerosol loading was 7.5 µg m−3 (5.9 to 10.5 µg m−3). The accumulation mode aerosol population over land displayed similar chemical properties to the upstream population, which implies that upstream aerosol is a significant source of aerosol pollution over the continent. The upstream aerosol is found to have most likely originated from central and southern African biomass burning. This demonstrates that biomass burning plumes are being advected northwards, after being entrained into the monsoon layer over the eastern tropical Atlantic Ocean. It is shown observationally for the first time that they contribute up to 80 % to the regional aerosol loading in the monsoon layer over southern West Africa. Results from the COSMO-ART (Consortium for Small-scale Modeling – Aerosol and Reactive Trace gases) and GEOS-Chem models support this conclusion, showing that observed aerosol concentrations over the northern Atlantic Ocean can only be reproduced when the contribution of transported biomass burning aerosol is taken into account. As a result, the large and growing emissions from the coastal cities are overlaid on an already substantial aerosol background. Simulations using COSMO-ART show that cloud droplet number concentrations can increase by up to 27 % as a result of transported biomass burning aerosol. On a regional scale this renders cloud properties and precipitation less sensitive to future increases in anthropogenic emissions. In addition, such high background loadings will lead to greater pollution exposure for the large and growing population in southern West Africa. These results emphasise the importance of including aerosol from across country borders in the development of air pollution policies and interventions in regions such as West Africa.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-11
    Description: The evolution of the vertical distribution and optical properties of aerosols in the free troposphere, above stratocumulus, is characterized for the first time over the Namibian coast, a region where uncertainties on aerosol–cloud coupling in climate simulations are significant. We show the high variability of atmospheric aerosol composition in the lower and middle troposphere during the Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) field campaign (22 August–12 September 2017) around the Henties Bay supersite using a combination of ground-based, airborne and space-borne lidar measurements. Three distinct periods of 4 to 7 d are observed, associated with increasing aerosol loads (aerosol optical thickness at 550 nm ranging from ∼0.2 to ∼0.7), as well as increasing lofted aerosol layer depth and top altitude. Aerosols are observed up to 6 km above mean sea level during the later period. Aerosols transported within the free troposphere are mainly polluted dust (predominantly dust mixed with smoke from fires) for the first two periods (22 August–1 September 2017) and smoke for the last part (3–9 September) of the field campaign. As shown by Lagrangian back-trajectory analyses, the main contribution to the aerosol optical thickness over Henties Bay is shown to be due to biomass burning over Angola. Nevertheless, in early September, the highest aerosol layers (between 5 and 6 km above mean sea level) seem to come from South America (southern Brazil, Argentina and Uruguay) and reach Henties Bay after 3 to 6 d. Aerosols appear to be transported eastward by the midlatitude westerlies and towards southern Africa by the equatorward moving cut-off low originating from within the westerlies. All the observations show a very complex mixture of aerosols over the coastal regions of Namibia that must be taken into account when investigating aerosol radiative effects above stratocumulus clouds in the southeast Atlantic Ocean.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-05
    Description: The dynamical context and moisture transport pathways embedded in large-scale flow and associated with a heavy precipitation event (HPE) in southern Italy (SI) are investigated with the help of stable water isotopes (SWIs) based on a purely numerical framework. The event occurred during the Intensive Observation Period (IOP) 13 of the field campaign of the Hydrological Cycle in the Mediterranean Experiment (HyMeX) on 15 and 16 October 2012, and SI experienced intense rainfall of 62.4 mm over 27 h with two precipitation phases during this event. The first one (P1) was induced by convective precipitation ahead of a cold front, while the second one (P2) was mainly associated with precipitation induced by large-scale uplift. The moisture transport and processes responsible for the HPE are analysed using a simulation with the isotope-enabled regional numerical model COSMOiso. The simulation at a horizontal grid spacing of about 7 km over a large domain (about 4300 km ×3500 km) allows the isotopes signal to be distinguished due to local processes or large-scale advection. Backward trajectory analyses based on this simulation show that the air parcels arriving in SI during P1 originate from the North Atlantic and descend within an upper-level trough over the north-western Mediterranean. The descending air parcels reach elevations below 1 km over the sea and bring dry and isotopically depleted air (median δ18O ≤-25 ‰, water vapour mixing ratio q≤2 g kg−1) close to the surface, which induces strong surface evaporation. These air parcels are rapidly enriched in SWIs (δ18O ≥-14 ‰) and moistened (q≥8 g kg−1) over the Tyrrhenian Sea by taking up moisture from surface evaporation and potentially from evaporation of frontal precipitation. Thereafter, the SWI-enriched low-level air masses arriving upstream of SI are convectively pumped to higher altitudes, and the SWI-depleted moisture from higher levels is transported towards the surface within the downdrafts ahead of the cold front over SI, producing a large amount of convective precipitation in SI. Most of the moisture processes (i.e. evaporation, convective mixing) related to the HPE take place during the 18 h before P1 over SI. A period of 4 h later, during the second precipitation phase P2, the air parcels arriving over SI mainly originate from north Africa. The strong cyclonic flow around the eastward-moving upper-level trough induces the advection of a SWI-enriched African moisture plume towards SI and leads to large-scale uplift of the warm air mass along the cold front. This lifts moist and SWI-enriched air (median δ18O ≥-16 ‰, median q≥6 g kg−1) and leads to gradual rain out of the air parcels over Italy. Large-scale ascent in the warm sector ahead of the cold front takes place during the 72 h preceding P2 in SI. This work demonstrates how stable water isotopes can yield additional insights into the variety of thermodynamic mechanisms occurring at the mesoscale and synoptic scale during the formation of a HPE.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-29
    Description: The present study examines the impact of the environmental moisture structure in the lower troposphere (below 2 km above sea level, a.s.l.) on the precipitation development, observed in southern France during Intensive Observation Period (IOP) 13 of the first Special Observation Period of the Hydrological cycle in the Mediterranean Experiment (HyMeX SOP-1), through a series of sensitivity experiments using the non-hydrostatic mesoscale atmospheric numerical model (Meso-NH). The control simulation (CNTL) and all the other 12 sensitivity experiments examined in this study succeed in reproducing a heavy precipitation event (HPE) in the coastal mountainous region of Var in south-eastern France as observed. The sensitivity experiments are designed to investigate the response of the HPE to the variability of the water vapour content upstream in the moist marine atmospheric boundary layer (MABL) and the drier air above. The comparisons between CNTL and the 12 sensitivity experiments show how the life cycle of precipitation associated with the HPE, but also the upstream flow (over the sea), is modified, even for moisture content changes of only 1 g kg−1 below 2 km a.s.l. Within the low-level wind convergence between southerlies and south-westerlies, a small increase of moisture content in the MABL prolongs moderate precipitation (≥5 mm in 15 min) and enlarges the area of weak precipitation (≥1 mm in 15 min). The moistening in the 1–2 km a.s.l. layer, just above the MABL, prolongs the duration of moderate precipitation, for a similar total precipitation amount as in CNTL. The drier MABL and 1–2 km a.s.l. layer shorten the lifetime of precipitation and reduce the total precipitation amount with respect to CNTL. We also found that the moisture in the MABL has a stronger impact on producing enhanced precipitation (both in terms of amount and intensity) than the moisture just above (1–2 km a.s.l.). Also, it is worth noting that adding moisture in the MABL does not necessarily lead to enhanced precipitation amount. In moistening the MABL, the duration of moderate precipitation increases with increasing moisture as does the area covered by weak precipitation, while the area covered by the intense precipitation (≥30 mm) decreases. Despite a simplified moisture-profile modification approach, this study suggests that moisture structure in the lower troposphere is key for accurate prediction at short-term range of the timing and location of precipitation in the coastal mountainous region in southern France.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-08-10
    Description: The isotopic composition of water vapour in the North Atlantic free troposphere is investigated with Infrared Atmospheric Sounding Interferometer (IASI) measurements of the D ∕ H ratio (δD) above the ocean. We show that in the vicinity of West Africa, the seasonality of δD is particularly strong (130 ‰), which is related with the influence of the Saharan heat low (SHL) during summertime. The SHL indeed largely influences the dynamic in that region by producing deep turbulent mixing layers, yielding a specific water vapour isotopic footprint. The influence of the SHL on the isotopic budget is analysed on various time and space scales and is shown to be large, highlighting the importance of the SHL dynamics on the moistening and the HDO enrichment of the free troposphere over the North Atlantic. The potential influence of the SHL is also investigated on the inter-annual scale as we also report important variations in δD above the Canary archipelago region. We interpret the variability in the enrichment, using backward trajectory analyses, in terms of the ratio of air masses coming from the North Atlantic and air masses coming from the African continent. Finally, the interest of IASI high sampling capabilities is further illustrated by presenting spatial distributions of δD and humidity above the North Atlantic from which we show that the different sources and dehydration pathways controlling the humidity can be disentangled thanks to the added value of δD observations. More generally, our results demonstrate the utility of δD observations obtained from the IASI sounder to gain insight into the hydrological cycle processes in the West African region.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-01-14
    Description: During the monsoon season, pollutants emitted by large coastal cities and biomass burning plumes originating from central Africa have complex transport pathways over southern West Africa (SWA). The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) field campaign has provided numerous dynamical and chemical measurements in and around the super-site of Savè in Benin (≈185 km away from the coast), which allows quantification of the relative contribution of advected pollutants. Through the combination of in situ ground measurements with aircraft, radio-sounding, satellite, and high-resolution chemistry-transport modeling with the CHIMERE model, the source attribution and transport pathways of pollutants inland (here, NOx and CO) are carefully analyzed for the 1–7 July 2016 period. The relative contributions of different sources (i.e., emissions from several large coastal cities) to the air quality in Savè are characterized. It is shown that a systematic diurnal cycle exists with high surface concentrations of pollutants from 18:00 to 22:00 UTC. This evening peak is attributed to pollution transport from the coastal city of Cotonou (Benin). Numerical model experiments indicate that the anthropogenic pollutants are accumulated during the day close to the coast and transported northward as soon as the daytime convection in the atmospheric boundary layer ceases after 16:00 UTC, reaching 8∘ N at 21:00 UTC. When significant biomass burning pollutants are transported into continental SWA, they are mixed with anthropogenic pollutants along the coast during the day, and this mixture is then transported northward. At night, most of the coastal anthropogenic plumes are transported within the planetary boundary layer (below about 500 m above ground level), whereas the biomass burning pollutants are mostly transported above it, thus generally not impacting ground level air quality.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-01-16
    Description: Carbon monoxide, CO, and fine atmospheric particulate matter, PM2.5, are analyzed over the Guinean Gulf coastal region using the WRF-CHIMERE modeling system and observations during the beginning of the monsoon 2006 (from May to July), corresponding to the Africa Multidisciplinary Monsoon Analysis (AMMA) campaign period. Along the Guinean Gulf coast, the contribution of long-range pollution transport to CO or PM2.5 concentrations is important. The contribution of desert dust PM2.5 concentration decreases from ∼ 38 % in May to ∼ 5 % in July. The contribution of biomass burning PM2.5 concentration from Central Africa increases from ∼ 10 % in May to ∼ 52 % in July. The anthropogenic contribution is ∼ 30 % for CO and ∼ 10 % for PM2.5 during the whole period. When focusing only on anthropogenic pollution, frequent northward transport events from the coast to the Sahel are associated with periods of low wind and no precipitation. In June, anthropogenic PM2.5 and CO concentrations are higher than in May or July over the Guinean coastal region. Air mass dynamics concentrate pollutants emitted in the Sahel due to a meridional atmospheric cell. Moreover, a part of the pollution emitted remotely at the coast is transported and accumulated over the Sahel. Focusing the analysis on the period 8–15 June, anthropogenic pollutants emitted along the coastline are exported toward the north especially at the beginning of the night (18:00 to 00:00 UTC) with the establishment of the nocturnal low level jet. Plumes originating from different cities are mixed for some hours at the coast, leading to high pollution concentration, because of specific disturbed meteorological conditions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-01-22
    Description: As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an airborne campaign was designed to measure a large range of atmospheric constituents, focusing on the effect of anthropogenic emissions on regional climate. The presented study details results of the French ATR42 research aircraft, which aimed to characterize gas-phase, aerosol and cloud properties in the region during the field campaign carried out in June/July 2016 in combination with the German Falcon 20 and the British Twin Otter aircraft. The aircraft flight paths covered large areas of Benin, Togo, Ghana and Côte d'Ivoire, focusing on emissions from large urban conurbations such as Abidjan, Accra and Lomé, as well as remote continental areas and the Gulf of Guinea. This paper focuses on aerosol particle measurements within the boundary layer ( 15 nm) of 735 cm−3 stp. Regarding submicron aerosol composition (considering non-refractory species and black carbon, BC), organic aerosol (OA) is the most abundant species contributing 53 %, followed by SO4 (27 %), NH4 (11 %), BC (6 %), NO3 (2 %) and minor contribution of Cl (
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-09-14
    Description: In June and July 2016 the Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa (DACCIWA) project organised a major international field campaign in southern West Africa (SWA) including measurements from three inland ground supersites, urban sites in Cotonou and Abidjan, radiosondes, and three research aircraft. A significant range of different weather situations were encountered during this period, including the monsoon onset. The purpose of this paper is to characterise the large-scale setting for the campaign as well as synoptic and mesoscale weather systems affecting the study region in the light of existing conceptual ideas, mainly using objective and subjective identification algorithms based on (re-)analysis and satellite products. In addition, it is shown how the described synoptic variations influence the atmospheric composition over SWA through advection of mineral dust, biomass burning and urban pollution plumes.The boreal summer of 2016 was characterised by Pacific La Niña, Atlantic El Niño and warm eastern Mediterranean conditions, whose competing influences on precipitation led to an overall average rainy season. During the relatively dusty pre-onset Phase 1 (1–21 June 2016), three westward-propagating coherent cyclonic vortices between 4 and 13° N modulated winds and rainfall in the Guinea coastal area. The monsoon onset occurred in connection with a marked extratropical trough and cold surge over northern Africa, leading to a breakdown of the Saharan heat low and African easterly jet and a suppression of rainfall. During this period, quasi-stationary low-level vortices associated with the trough transformed into more tropical, propagating disturbances resembling an African easterly wave (AEW). To the east of this system, moist southerlies penetrated deep into the continent. The post-onset Phase 2 (22 June–20 July 2016) was characterised by a significant increase in low-level cloudiness, unusually dry conditions and strong northeastward dispersion of urban pollution plumes in SWA as well as rainfall modulation by westward-propagating AEWs in the Sahel. Around 12–14 July 2016 an interesting and so-far undocumented cyclonic–anticyclonic vortex couplet crossed SWA. The anticyclonic centre had its origin in the Southern Hemisphere and transported unusually dry air filled with aged aerosol into the region. During Phase 3 (21–26 July 2016), a similar vortex couplet slightly farther north created enhanced westerly moisture transports into SWA and extraordinarily wet conditions, accompanied by a deep penetration of the biomass burning plume from central Africa. Finally, a return to more undisturbed monsoon conditions took place during Phase 4 (27–31 July 2016). The in-depth synoptic analysis reveals that several significant weather systems during the DACCIWA campaign cannot be attributed unequivocally to any of the tropical waves and disturbances described in the literature and thus deserve further study.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...