ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-01
    Description: Dolomite occurs in a wide range of rock compositions, from peridotites to mafic eclogites and metasediments, up to mantle depths of more than 200 km. At low-temperatures dolomite is ordered ( R ), but transforms with increasing temperature into a disordered higher symmetry structure ( R c ). To understand the thermodynamics of dolomite, we have investigated temperature, pressure, kinetics, and compositional dependence of the disordering process in Fe-bearing dolomites. To avoid quench effects, in situ X-ray powder diffraction experiments were performed at 300–1350 K and 2.6–4.2 GPa. The long-range order parameter s , quantifying the degree of ordering, has been determined using structural parameters from Rietveld refinement and the normalized peak area variation of superstructure Bragg peaks characterizing structural ordering/disordering. Time-series experiments show that disordering occurs in 20–30 min at 858 K and in a few minutes at temperatures ≥999 K. The order parameter decreases with increasing temperature and X Fe . Complete disorder is attained in dolomite at ~1240 K, 100–220 K lower than previously thought, and in an ankeritic-dolomite s.s. with an X Fe of 0.43 at temperatures as low as ~900 K. The temperature-composition dependence of the disorder process was fitted with a phenomenological approach intermediate between the Landau theory and the Bragg-Williams model and predicts complete disorder in pure ankerite to occur already at ~470 K. The relatively low-temperature experiments of this study also constrain the breakdown of dolomite to aragonite+Fe-bearing magnesite at 4.2 GPa to temperature lower than ~800 K favoring an almost straight Clapeyron-slope for this disputed reaction.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-21
    Description: Although alkali-alkali earth carbonates have not been reported from mantle-derived xenoliths, these carbonates may have a substantial role in mantle metasomatic processes through lowering melting temperatures. On the Na 2 Mg(CO 3 ) 2 –K 2 Mg(CO 3 ) 2 join only the Na-end-member eitelite ( R space group), was reported in nature. The K-end-member ( R m ) readily hydrates even at low temperatures, therefore, only baylissite, K 2 Mg(CO 3 ) 2 ·4H 2 O, has been observed. Because of the role of (K,Na)Mg-double carbonates in mantle metasomatism, we performed high P-T experiments on K 2 Mg(CO 3 ) 2 , (K 1.1 Na 0.9 ) 2 Mg(CO 3 ) 2 , and Na 2 Mg(CO 3 ) 2 . Structure refinements were done upon compression of single crystals from 0 to 9 GPa at ambient temperature employing synchrotron radiation. Fitting the compression data to the second-order Birch-Murnaghan EoS resulted in V 0 = 396.2(4), 381.2(5), and 347.1(3) Å 3 and K 0 = 57.0(10), 54.9(13), and 68.6(13) GPa for K 2 Mg(CO 3 ) 2 , (K 1.1 Na 0.9 ) 2 Mg(CO 3 ) 2 , and Na 2 Mg(CO 3 ) 2 , respectively. These compressibilities are lower than those of magnesite and dolomite. The KMg-double carbonate transforms into a monoclinic polymorph at 8.05 GPa; the high- P phase is 1% denser than the low- P polymorph. The NaMg-double carbonate has a phase transition at ~14 GPa, but poor recrystallization has prevented structure refinement. The parameters for a V-T EoS were collected at 25–600 °C and ambient pressure and are α 0 = 14.31(5) x 10 –5 K –1 and 16.73(11) x 10 –5 K –1 for K 2 Mg(CO 3 ) 2 and Na 2 Mg(CO 3 ) 2 , respectively. Moreover, fitting revealed an anisotropy of thermal expansion along the a - and c -axis: α 0 ( a ) = 2.84(6) x 10 –5 and 4.78(5) x 10 –5 K –1 and α 0 ( c ) = 10.47(11) x 10 –5 and 8.72(5) x 10 –5 K –1 for K 2 Mg(CO 3 ) 2 and Na 2 Mg(CO 3 ) 2 , respectively.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-05-11
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-01-24
    Description: We estimated CO2, CH4, CO and N2O emission fluxes over the British Isles and Western Europe using atmospheric radon observations and concentrations recorded at the Mace Head Atmospheric Research Station between 1996 and 2005. We classified hourly concentration data into either long-range European or regional sources from Ireland and UK, by using local wind speed data in conjunction with 222Rn and 212Pb threshold criteria. This leads to the selection of about 7% of the total data for both sectors. We then used continuous 222Rn measurements and assumptions on the surface emissions of 222Rn to deduce the unknown fluxes of CO2, CH4, CO and N2O. Our results have been compared to the UNFCCC, EMEP and EDGAR statistical inventories and to inversion results for CH4. For Western Europe, we found yearly mean fluxes of 4.1±1.5 106 kg CO2 km−2 yr−1 , 11.9±2.0 103 kg CH4 km−2 yr−1, 12.8±4.2 103 kg CO km−2 yr−1 and 520.2±129.2 kg N2O km−2 yr−1, respectively, for CO2, CH4, CO and N2O over the period 1996–2005. The method based upon 222Rn to infer emissions has many sources of systematic errors, in particular its poorly known and variable footprint, uncertainties in 222Rn soil fluxes and in atmospheric mixing of air masses with background air. However, these biases are likely to remain constant in the long-term, which makes the method quite efficient to detect trends in fluxes. Over the last ten years period, the decrease of the anthropogenic CH4, CO and N2O emissions in Europe estimated by inventories (respectively −30%, −35% and −23%) is confirmed by the Mace Head data within 2%. Therefore, the 222Rn method provides an independent way of verification of changes in national emissions derived from inventories. Using European-wide estimates of the CO/CO2 emission ratio, we also found that it is possible to separate the fossil fuel CO2 emissions contribution from the one of total CO2 fluxes. The fossil fuel CO2 emissions and their trends derived in that manner agree very well with inventories.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-11-25
    Description: This paper presents an analysis of the recent tropospheric molecular hydrogen (H2) budget with a particular focus on soil uptake and surface emissions. A variational inversion scheme is combined with observations from the RAMCES and EUROHYDROS atmospheric networks, which include continuous measurements performed between mid-2006 and mid-2009. Net H2 surface flux, soil uptake distinct from surface emissions and finally, soil uptake, biomass burning, anthropogenic emissions and N2 fixation-related emissions separately were inverted in several scenarios. The various inversions generate an estimate for each term of the H2 budget. The net H2 flux per region (High Northern Hemisphere, Tropics and High Southern Hemisphere) varies between −8 and 8 Tg yr−1. The best inversion in terms of fit to the observations combines updated prior surface emissions and a soil deposition velocity map that is based on soil uptake measurements. Our estimate of global H2 soil uptake is −59 ± 4.0 Tg yr−1. Forty per cent of this uptake is located in the High Northern Hemisphere and 55% is located in the Tropics. In terms of surface emissions, seasonality is mainly driven by biomass burning emissions. The inferred European anthropogenic emissions are consistent with independent H2 emissions estimated using a H2/CO mass ratio of 0.034 and CO emissions considering their respective uncertainties. To constrain a more robust partition of H2 sources and sinks would need additional constraints, such as isotopic measurements.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-01
    Description: Measurements of the mole fraction of the CO2 and its isotopes were performed in Paris during the MEGAPOLI winter campaign (January–February 2010). Radiocarbon (14CO2) measurements were used to identify the relative contributions of 77% CO2 from fossil fuel consumption (CO2ff from liquid and gas combustion) and 23% from biospheric CO2 (CO2 from the use of biofuels and from human and plant respiration: CO2bio). These percentages correspond to average mole fractions of 26.4 ppm and 8.2 ppm for CO2ff and CO2bio, respectively. The 13CO2 analysis indicated that gas and liquid fuel contributed 70% and 30%, respectively, of the CO2 emission from fossil fuel use. Continuous measurements of CO and NOx and the ratios CO/CO2ff and NOx/CO2ff derived from radiocarbon measurements during four days make it possible to estimate the fossil fuel CO2 contribution over the entire campaign. The ratios CO/CO2ff and NOx/CO2ff are functions of air mass origin and exhibited daily ranges of 7.9 to 14.5 ppb ppm−1 and 1.1 to 4.3 ppb ppm−1, respectively. These ratios are consistent with different emission inventories given the uncertainties of the different approaches. By using both tracers to derive the fossil fuel CO2, we observed similar diurnal cycles with two maxima during rush hour traffic.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-03-20
    Description: Three years of greenhouse gases measurements, obtained using a gas chromatograph (GC) system located at the Puy de Dôme station at 1465 m a.s.l. in Central France are presented. The GC system was installed in 2010 at Puy de Dôme and was designed for automatic and accurate semi-continuous measurements of atmospheric carbon dioxide, methane, nitrous oxide and sulfur hexafluoride mole fractions. We present in detail the instrumental set up and the calibration strategy, which together allow the GC to reach repeatabilities of 0.1 μmol mol−1, 1.2, 0.3 nmol mol−1 and 0.06 pmol mol−1 for CO2, CH4, N2O and SF6, respectively. Comparisons of the atmospheric time series with those obtained using other instruments shown that the GC system meets the World Meteorological Organization recommendations. The analysis of the three-year atmospheric time series revealed how the planetary boundary layer height drives the mole fractions observed at a mountain site such as Puy de Dôme where air masses alternate between the planetary boundary layer and the free troposphere. Accurate long-lived greenhouse gases measurements collocated with 222Rn measurements as an atmospheric tracer, allowed us to determine the CO2, CH4 and N2O emissions in the catchment area of the station. The derived CO2 surface flux revealed a clear seasonal cycle with net uptake by plant assimilation in the spring and net emission caused by the biosphere and burning of fossil fuel during the remainder of the year. We calculated a mean annual CO2 flux of 1150 t(CO2) km−2. The derived CH4 and N2O emissions in the station catchment area were 5.6 t(CH4) km−2 yr−1 and 1.5 t(N2O) km−2 yr−1, respectively. Our derived annual CH4 flux is in agreement with the national French inventory, whereas our derived N2O flux is five times larger than the same inventory.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-03-19
    Description: This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier Transform Infrared (FTIR) spectroscopy and Cavity Ring Down Spectroscopy (CRDS) instruments. We show that the tracer release method is suitable to quantify facility- and some process-scale emissions, while the chamber measurements, provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10% of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant represents a small part (about 1.5%) of the methane emissions of the city of Valence and its surroundings, which is lower than the national inventories.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-04-20
    Description: The recent increase of atmospheric methane is investigated by using two atmospheric inversions to quantify the distribution of sources and sinks for the 2006–2008 period, and a process-based model of methane emissions by natural wetland ecosystems. Methane emissions derived from the two inversions are consistent at a global scale: emissions are decreased in 2006 (−7 Tg) and increased in 2007 (+21 Tg) and 2008 (+18 Tg), as compared to the 1999–2006 period. The agreement on the latitudinal partition of the flux anomalies for the two inversions is fair in 2006, good in 2007, and not good in 2008. In 2007, a positive anomaly of tropical emissions is found to be the main contributor to the global emission anomalies (~60–80%) for both inversions, with a dominant share attributed to natural wetlands (~2/3), and a significant contribution from high latitudes (~25%). The wetland ecosystem model produces smaller and more balanced positive emission anomalies between the tropics and the high latitudes for 2006, 2007 and 2008, mainly due to precipitation changes during these years. At a global scale, the agreement between the ecosystem model and the inversions is good in 2008 but not satisfying in 2006 and 2007. Tropical South America and Boreal Eurasia appear to be major contributors to variations in methane emissions consistently in the inversions and the ecosystem model. Finally, changes in OH radicals during 2006–2008 are found to be less than 1% in inversions, with only a small impact on the inferred methane emissions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-04-11
    Description: This paper presents an analysis of the recent tropospheric molecular hydrogen (H2) budget with a particular focus on soil uptake and European surface emissions. A variational inversion scheme is combined with observations from the RAMCES and EUROHYDROS atmospheric networks, which include continuous measurements performed between mid-2006 and mid-2009. Net H2 surface flux, then deposition velocity and surface emissions and finally, deposition velocity, biomass burning, anthropogenic and N2 fixation-related emissions were simultaneously inverted in several scenarios. These scenarios have focused on the sensibility of the soil uptake value to different spatio-temporal distributions. The range of variations of these diverse inversion sets generate an estimate of the uncertainty for each term of the H2 budget. The net H2 flux per region (High Northern Hemisphere, Tropics and High Southern Hemisphere) varies between −8 and +8 Tg yr−1. The best inversion in terms of fit to the observations combines updated prior surface emissions and a soil deposition velocity map that is based on bottom-up and top-down estimations. Our estimate of global H2 soil uptake is −59±9 Tg yr−1. Forty per cent of this uptake is located in the High Northern Hemisphere and 55% is located in the Tropics. In terms of surface emissions, seasonality is mainly driven by biomass burning emissions. The inferred European anthropogenic emissions are consistent with independent H2 emissions estimated using a H2/CO mass ratio of 0.034 and CO emissions within the range of their respective uncertainties. Additional constraints, such as isotopic measurements would be needed to infer a more robust partition of H2 sources and sinks.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...