ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (4)
  • Copernicus  (2)
  • Blackwell Publishing Ltd  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 22 (2003), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Notes: A one-dimensional (vertical) model is used to estimate the mass of ice-rafted sediment in turbid sea ice on the shallow Kara Sea shelf during autumn freeze-up. Sediment is entrained into the ice through aggregation with frazil ice crystals that are diffused downwards by wind-generated turbulence. Data from local meteorological stations are used to force the model, while water stratification and sediment concentrations from the area are used to initiate the model. Model results indicate a 0.2 m thick layer of slush ice created during 48 h with a mean wind of 6 m/s and an air temperature of −10°C. This ice contains ca. 20 mg/1 of sediment, or in total ca. 2% of the annual sediment discharge by nearby rivers. In shallow areas (〈20 m depth) the process is very effective with winds of ca. 12 m/s, and the process can incorporate many years of sediment discharge. In the deeper areas (〉20 m depth), the strong salinity stratification implies that winds above 18 m/s are needed for the process to be effective. For the rest of the winter months the same process may lead to additional sediment incorporated in a coastal polynya, but the freeze-up alone has the capacity to incorporate the total summer discharge of sediment into the surface ice. Calculated sediment concentrations in the surface ice cover are in the range 3 mg/1-19 g/1, in good agreement with available field data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-01-01
    Description: In situ field measurements of an active polynya in Storfjorden, Svalbard, during April 2006 are presented. A surface heat flux, estimated to be 400 W m−2, produced frazil ice that was advected away from the fast ice edge during the end of a polynya event driven by cold winds from the northeast. Conductivity, temperature and depth casts from the fast ice edge of the polynya were calibrated by accompanying water samples, and reveal a supercooling event that lasted for 3 days in a 5 m deep water column. Surface salinity reached 35.9 psu from brine release during ice growth. The maximum supercooling measured was 0.037 ± 0.005°C below the in situ freezing point near the surface and 0.016 ± 0.005°C at the bottom; the mean supercooling gradient was 0.020 ± 0.005°C between the surface and the bottom. These measurements are consistent with results from a one-dimensional frazil ice model, confirming that such supercooling levels can be expected. Frazil ice concentrations in the water were modeled to be lower than 0.02 g L−1, due to advection in the surface layer. Seven frazil/grease ice samples taken from a place where advection was blocked along the fast ice edge showed a mean salinity of 26.2 psu, indicating 25% frazil ice and 75% sea water in the grease ice. The water-column salinity decreased during the measurement period due to less saline water replacing newly formed brine-enriched shelf water flowing down to deeper parts of Storfjorden. The supercooling ceased when the wind direction turned to the east, with higher air temperatures and warmer and less saline water being pushed into Storfjorden by the northward Ekman transport. These are the first in situ observations from an active Arctic polynya with concurrent sampling of hydrography and frazil ice, and the supercooling is the maximum observed in recent years with modern and accurate instrumentation.
    Print ISSN: 0022-1430
    Electronic ISSN: 1727-5652
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-13
    Description: A new long-term data record of Fram Strait sea ice area export from 1935 to 2014 is developed using a combination of satellite radar images and station observations of surface pressure across Fram Strait. This data record shows that the long-term annual mean export is about 880 000 km2, representing 10 % of the sea-ice-covered area inside the basin. The time series has large interannual and multi-decadal variability but no long-term trend. However, during the last decades, the amount of ice exported has increased, with several years having annual ice exports that exceeded 1 million km2. This increase is a result of faster southward ice drift speeds due to stronger southward geostrophic winds, largely explained by increasing surface pressure over Greenland. Evaluating the trend onwards from 1979 reveals an increase in annual ice export of about +6 % per decade, with spring and summer showing larger changes in ice export (+11 % per decade) compared to autumn and winter (+2.6 % per decade). Increased ice export during winter will generally result in new ice growth and contributes to thinning inside the Arctic Basin. Increased ice export during summer or spring will, in contrast, contribute directly to open water further north and a reduced summer sea ice extent through the ice–albedo feedback. Relatively low spring and summer export from 1950 to 1970 is thus consistent with a higher mid-September sea ice extent for these years. Our results are not sensitive to long-term change in Fram Strait sea ice concentration. We find a general moderate influence between export anomalies and the following September sea ice extent, explaining 18 % of the variance between 1935 and 2014, but with higher values since 2004.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-01-01
    Description: A polynya appears regularly in Storfjorden on the east side of the Svalbard archipelago. It is mainly forced by offshore winds and contributes around 10% of the brine water produced on Arctic shelves. We have applied a regional ocean model (ROMS), including a sea-ice model, on a fine grid (2 km) to simulate a full year of sea-ice growth and decay starting on 1 August 1999. This allows us to reproduce some key processes of the polynya opening and closing events during January–April 2000. The polynya remains open as long as the offshore winds exist, and reaches a width along the direction of the wind of 10–20 km. We suggest using a mean sea-ice thickness of
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-04-10
    Description: The Nioghalvfjerdsbræ (79NG) is a floating ice tongue on Northeast Greenland draining a large part of the Greenland Ice Sheet. A CTD profile from a rift on the ice tongue close to the northern front shows that Atlantic Water (AW) is present in the cavity below, with maximum temperature of approximately 1 °C at 610 m depth. The AW present in the cavity thus has the potential to drive submarine melting along the ice base. Here, we simulate melt rates from the 79NG with a 1D numerical Ice Shelf Water (ISW) plume model. A meltwater plume is initiated at the grounding line depth (600 m) and rises along the ice base as a result of buoyancy contrast to the underlying AW. Ice melts as the plume entrains the warm AW. Maximum simulated melt rates are 50–76 m yr−1 within 10 km of the grounding line. Within a zone of rapid decay between 10 km and 20 km melt rates drop to roughly 6 m yr−1. Further downstream, melt rates are between 15 m yr−1 and 6 m yr−1. The melt-rate sensitivity to variations in AW temperatures is assessed by forcing the model with AW temperatures between 0.1–1.4 °C, as identified from the ECCOv4 ocean state estimate. The melt rates increase linearly with rising AW temperature, ranging from 10 m yr−1 to 21 m yr−1 along the centerline. The corresponding freshwater flux ranges between 11 km3 yr−1 (0.4 mSv) and 30 km3 yr−1 (1.0 mSv), which is 5 % and 12 % of the total freshwater flux from the Greenland Ice Sheet since 1995, respectively. Our results improve the understanding of processes driving submarine melting of marine-terminating glaciers around Greenland, and its sensitivity to changing ocean conditions.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-01-01
    Description: Grease ice is a mixture of sea water and frazil ice crystals forming in Arctic and Antarctic waters. the initial grease-ice cover, or the grease ice forming during winter in leads and polynyas, may therefore have mixed properties of water and ice. Most sea-ice models use a lower thickness limit on the solid sea ice, representing a transition from grease ice to solid ice. Before grease ice solidifies it is often packed into a layer by the local wind. Existing field measurements of grease ice are compared and used to evaluate a new thickness parameterization including the drag from the wind as well as the ocean current. the measurements support a scaling of the wind drag and the back pressure from the grease-ice layer using a nonlinear relation. the relation is consistent with an increasing grease-ice thickness towards a solid boundary. Grease-ice data from Storfjorden, Svalbard, confirm that tidal currents are strong enough to add significant drag force on the grease ice. A typical wind speed of only 10ms −1 results in a 0.3m thick layer of grease ice. Tidal currents of 0.5ms −1 will pack the grease ice further towards a stagnant boundary to a mean thickness of 0.8 m.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-01
    Description: The first stage of sea-ice formation is often grease ice, a mixture of sea water and frazil ice crystals. Over time, grease ice typically congeals first to pancake ice floes and then to a solid sea-ice cover. Grease ice is commonly not explicitly simulated in basin-scale sea-ice ocean models, though it affects oceanic heat loss and ice growth and is expected to play a greater role in a more seasonally ice-covered Arctic Ocean. We present an approach to simulate the grease-ice layer with, as basic properties, the surface being at the freezing point, a frazil ice volume fraction of 25%, and a negligible change in the surface heat flux compared to open water. The latter governs grease-ice production, and a gradual transition to solid sea ice follows, with ∼50% of the grease ice solidifying within 24 hours. The new parameterization delays lead closing by solid ice formation, enhances oceanic heat loss in fall and winter, and produces a grease-ice layer that is variable in space and time. Results indicate a 10-30% increase in mean winter Arctic Ocean heat loss compared to a standard simulation, with instant lead closing leading to significantly enhanced ice growth.
    Print ISSN: 0260-3055
    Electronic ISSN: 1727-5644
    Topics: Geography , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...