ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-06
    Description: The Journal of Physical Chemistry B DOI: 10.1021/acs.jpcb.5b02222
    Electronic ISSN: 1520-5207
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-16
    Description: Analytical Chemistry DOI: 10.1021/acs.analchem.6b03932
    Print ISSN: 0003-2700
    Electronic ISSN: 1520-6882
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-07-27
    Description: High-power high-frequency radio waves beamed into the ionosphere cause plasma turbulence, which can accelerate electrons. These electrons collide with the F-layer neutral oxygen causing artificial optical emissions identical to natural aurora. Pumping at electron gyro-harmonic frequencies has special significance as many phenomena change their character. In particular, artificial optical emissions become strongly reduced for the third and higher gyro-harmonics. The High frequency Active Auroral Research Program (HAARP) facility is unique in that it can select a frequency near the second gyro-harmonic. On 25 February 2004, HAARP was operated near the third and passed through the second gyro-harmonic for the first time in a weakening ionosphere. Two novel observations are: firstly, a strong enhancement of the artificial optical emission intensity near the second gyro-harmonic, which is opposite to higher gyro-harmonics; secondly, the optical enhancement maximum occurs for frequencies just above the second gyro-harmonic. We provide the first experimental evidence for these effects, which have been predicted theoretically. In addition, irregular optical structures were created when the pump frequency was above the ionospheric critical frequency.Keywords. Active experiments – Auroral ionosphere – Wave-particle interactions
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-09-15
    Description: Theoretical studies have predicted that large positive cloud-to-ground discharges can trigger a runaway avalanche process of relativistic electrons, forming a geomagnetically trapped electron beam. The beam may undergo pitch angle and energy scattering during its traverse of the Earth's magnetosphere, with a small percentage of electrons remaining in the loss cone and precipitating in the magnetically conjugate atmosphere. In particular, N2 1P and N2+1N optical emissions are expected to be observable. In July and August 2003, an attempt was made to detect these optical emissions, called "conjugate sprites", in correlation with sprite observations in Europe near . Sprite observations were made from the Observatoire du Pic du Midi (OMP) in the French Pyrenées, and VLF receivers were installed in Europe to detect causative sferics and ionospheric disturbances associated with sprites. In the Southern Hemisphere conjugate region, the Wide-angle Array for Sprite Photometry (WASP) was deployed at the South African Astronomical Observatory (SAAO), near Sutherland, South Africa, to observe optical emissions with a field-of-view magnetically conjugate to the Northern Hemisphere observing region. Observations at OMP revealed over 130 documented sprites, with WASP observations covering the conjugate region successfully for 30 of these events. However, no incidences of optical emissions in the conjugate hemisphere were found. Analysis of the conjugate optical data from SAAO, along with ELF energy measurements from Palmer Station, Antarctica, and charge-moment analysis, show that the lightning events during the course of this experiment likely had insufficient intensity to create a relativistic beam. Keywords. Ionosphere (Ionsophere-magnetosphere interactions; Ionospheric disturbances; Instruments and techniques)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2006-09-13
    Description: VLF remote sensing is used to detect lower-ionospheric electron density changes associated with a certain type of transient luminous events known as elves. Both ground- and satellite-based observations of elves are analysed in relation to VLF data acquired at various receiver sites in Europe, the United States and Antarctica. Ground-based observations were performed during the EuroSprite2003 campaign, when five elves were captured by low-light cameras located in the Pyrenees. Analysis of VLF recordings from Crete shows early VLF perturbations accompanying all of the elves. A large dataset consisting of elves captured by the ISUAL (Imager of Sprites and Upper Atmospheric Lightning) payload on Taiwan's FORMOSAT-2 satellite over Europe and North America has also been analysed. Early/fast VLF perturbations were found to accompany some of the elves observed over Europe. However, no VLF perturbations were detected in relation to the elves observed by ISUAL over North America. The present analysis – based on the largest database of optical elve observations used for VLF studies so far – constitutes evidence of processes initiated by the lightning EMP (electromagnetic pulse) causing electron density changes in the lower ionosphere in line with theoretical predictions. It also proves that sub-ionospheric electron density changes associated with elves can intrude to lower heights and thus perturb VLF transmissions. The possibility of VLF detection, however, depends on several factors, e.g., the distance of the elve from the receiver and the transmitter–receiver great circle path (GCP), the altitude of the ionised region and the characteristics of the VLF transmitter, as well as the EMP energy, which occasionally may be sufficient to cause optical emissions but not ionisation.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-05-28
    Description: Extensive optical observations have been carried out at the High Frequency Active Auroral Research Program (HAARP) ionospheric heating facility since it began operations in 1999. A number of modern optical diagnostic instruments are hosted at remote sites as well as the main transmitter facility, which has recently been expanded from the initial 960 kW prototype configuration to its full 3.6 MW design capability. Upgrades to optical diagnostics have allowed a number of interesting new observations to be made at the 960 kW power level since 2004. Systematic beam-swinging experiments generating quantifiable levels of optical emission at various regions in the sky for the first time clearly show that emission intensity is very sensitive to distance from the magnetic zenith, and drops off rapidly at about 15° zenith angle in directions other than magnetic south. High temporal resolution measurements of emissions in the 557.7 nm green line at start-up and in short transmitter pulses demonstrate that localized irregularities are preferentially excited in the initial seconds of heating, with evolution into a more homogenous spot occurring over a period of about 1 min. High-quality emission altitude profiles at both 630.0 and 557.7 nm have recently been isolated from side-looking data, spanning an altitude extent of over 200 km, which has allowed determination of the effective lifetime of O (1D) over an unprecedented altitude range. An innovative automated remote imager network utilizing low-cost mirror optics has been designed and deployed to make such measurements routinely. Observations of natural optical emissions at the site have revealed the common presence of highly structured but faint co-rotating subauroral precipitation that acts to suppress excitation of artificial F region optical emissions in areas of active precipitation. The observed spatial modulation of artificial optical emissions by structured precipitation is consistent with localized absorption of HF waves in the ionospheric D layer enhanced by the energetic particle precipitation.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1999-11-30
    Description: Day-time Pc 3–4 (~5–60 mHz) and night-time Pi 2 (~5–20 mHz) ULF waves propagating down through the ionosphere can cause oscillations in the Doppler shift of HF radio transmissions that are correlated with the magnetic pulsations recorded on the ground. In order to examine properties of these correlated signals, we conducted a joint HF Doppler/magnetometer experiment for two six-month intervals at a location near L = 1.8. The magnetic pulsations were best correlated with ionospheric oscillations from near the F region peak. The Doppler oscillations were in phase at two different altitudes, and their amplitude increased in proportion to the radio sounding frequency. The same results were obtained for the O- and X-mode radio signals. A surprising finding was a constant phase difference between the pulsations in the ionosphere and on the ground for all frequencies below the local field line resonance frequency, independent of season or local time. These observations have been compared with theoretical predictions of the amplitude and phase of ionospheric Doppler oscillations driven by downgoing Alfvén mode waves. Our results agree with these predictions at or very near the field line resonance frequency but not at other frequencies. We conclude that the majority of the observations, which are for pulsations below the resonant frequency, are associated with downgoing fast mode waves, and models of the wave-ionosphere interaction need to be modified accordingly.Key words. Ionosphere (ionosphere irregularities) · Magnetospheric physics (magnetosphere-ionosphere interactions) · Radio science (ionospheric physics)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...