ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Planetary and Space Science 35 (1987), S. 153-160 
    ISSN: 0032-0633
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Planetary and Space Science 27 (1979), S. 233-241 
    ISSN: 0032-0633
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Planetary and Space Science 32 (1984), S. 1291-1300 
    ISSN: 0032-0633
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In this paper an experiment designed for multifrequency azimuthal Doppler-spectrum investigations of decametre-scale plasma irregularities in the midlatitude E region is introduced and some preliminary results are presented. The observations were made with the high-frequency Valensole radar in the south of France. The radar operated in a multifrequency mode that allowed simultaneous measurements of Doppler spectra at the four frequencies of 9.23, 11.03, 12.71 and 16.09 MHz, which correspond to scatter from fieldaligned irregularities with wavelengths of 16.2, 13.6, 11.8 and 9.3 m, respectively. In addition, a digital ionosonde was operating beneath a small part of the radar viewing region. The data show that lower-frequency echoes are stronger, more frequent and more spatially extended than higher-frequency ones, in general agreement with theory and rocket measurements. On the other hand, the preliminary analysis shows no pronounced differences of the Doppler spectrum with radar frequency. Some trends in the spectral moments do exist, however, which can be understood as the result of temporal and/or spatial mixing of backscatter from directly generated (primary) plasma waves by the gradient drift instability and secondary low-velocity waves. Finally, a close relation of mid-latitude coherent backscatter with patchy sporadic E-layers is present in the data, but the details of this relation remain unresolved.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 18 (2000), S. 1172-1181 
    ISSN: 0992-7689
    Keywords: Ionosphere (auroral ionosphere; ionospheric irregularities; plasma waves and instabilities)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract In the theory of E-region plasma instabilities, the ambient electric field and electron density gradient are both included in the same dispersion relation as the key parameters that provide the energy for the generation and growth of electrostatic plasma waves. While there exist numerous measurements of ionospheric electric fields, there are very few measurements and limited knowledge about the ambient electron density gradients, ▽Ne, in the E-region plasma. In this work, we took advantage of the EISCAT CP1 data base and studied statistically the vertical electron density gradient length, Lz = Ne/(dNe/dz), at auroral E-region heights during both eastward and westward electrojet conditions and different ambient electric field levels. Overall, the prevailing electron density gradients, with Lz ranging from 4 to 7 km, are found to be located below 100 km, but to move steadily up in altitude as the electric field level increases. The steepest density gradients, with Lz possibly less than 3 km, occur near 110 km mostly in the eastward electrojet during times of strong electric fields. The results and their implications are examined and discussed in the frame of the linear gradient drift instability theory. Finally, it would be interesting to test the implications of the present results with a vertical radar interferometer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 15 (1997), S. 908-917 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract This paper presents more data on the properties of type-1 irregularities in the nighttime midlatitude E-region ionosphere. The measurements were made with a 50-MHz Doppler radar system operating in Crete, Greece. The type-1 echoes last from several seconds to a few minutes and are characterized by narrow Doppler spectra with peaks corresponding to wave phase velocities of 250–350 m/s. The average velocity of 285 m/s is about 20% lower than nominal E-region ion-acoustic speeds, probably because of the presence of heavy metallic ions in the sporadic-E-layers that appear to be associated with the mid-latitude plasma instabilities. Sometimes the type-1 echoes are combined with a broad spectrum of type-2 echoes; at other times they dominate the spectrum or may appear in the absence of any type-2 spectral component. We believe these echoes are due to the modified two-stream plasma instability driven by a polarization electric field that must be larger than 10 mV/m. This field is similar in nature to the equatorial electrojet polarization field and can arise when patchy nighttime sporadic-E-layers have the right geometry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0992-7689
    Keywords: Ionosphere (ionosphere irregularities; mid-latitude ionosphere) ; Meteorology and atmospheric dynamics (waves and tides)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Measurements of midlatitude E region coherent backscatter obtained during four summers with SESCAT, a 50 MHz Doppler system operating in Crete, Greece, and concurrent ionosonde recordings from the same ionospheric volume obtained with a CADI for one of these summers, are used to analyse the long-term variability in echo and Es occurrence. Echo and Es layer occurrences, computed in percent of time over a 12-h nighttime interval, take the form of time sequences. Linear power spectrum analysis shows that there are dominant spectral peaks in the range of 2–9 days, the most commonly observed periods appearing in two preferential bands, of 2–3 days and 4–7 days. No connection with geomagnetic activity was found. The characteristics of these periodicities compare well with similar properties of planetary waves, which suggests the possibility that planetary waves are responsible for the observed long-term periodicities. These findings indicate also a likely close relation between planetary wave (PW) activity and the well known but not well understood seasonal Es dependence. To test the PW postulation, we used simultaneous neutral wind data from the mesopause region around 95 km, measured from Collm, Germany. Direct comparison of the long-term periodicities in echo and Es layer occurrence with those in the neutral wind show some reasonable agreement. This new evidence, although not fully conclusive, is the first direct indication in favour of a planetary wave role on the unstable midlatitude E region ionosphere. Our results suggest that planetary waves observation is a viable option and a new element into the physics of midlatitude Es layers that needs to be considered and investigated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 12 (1994), S. 40-43 
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A previous study, based on incoherent and coherent radar measurements, suggested that during auroral E-region electron heating conditions, the electron flow in the auroral electrojet undergoes a systematic counterclockwise rotation of several degrees relative to the E×B direction. The observational evidence is re-examined here in the light of theoretical predictions concerning E-region electron demagnetization caused by enhanced anomalous cross-field diffusion during strongly-driven Farley-Buneman instability. It is shown that the observations are in good agreement with this theory. This apparently endorses the concept of wave-induced diffusion and anomalous electron collision frequency, and consequently electron demagnetization, under circumstances of strong heating of the electron gas in the auroral electrojet plasma. We recognize, however, that the evidence for electron demagnetization presented in this report cannot be regarded as definitive because it is based on a limited set of data. More experimental research in this direction is thus needed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The generation of Hall and field-aligned currents in and in the vicinity of nighttime mid-latitude sporadic E-layers moving under the action of strong acoustic impulses of seismic, anthropogenic, or meteorological nature is considered in a model presented in this paper. The influence of the electrical polarization fields caused by charges at the horizontal edges of the sporadic layers and the finite conductivity of the external circuits are also taken into account. The theoretical model is applicable for ionospheric altitudes between 95 and 130 km. The estimates show that under certain conditions in a system with two sporadic E-layers, one of which is the current generator and the other is situated in the external circuit, the Farley-Buneman instability could be generated. On the other hand, observations show that Farley-Buneman waves are likely responsible for the infrequent echoes of mid-latitude 50-MHz backscatter with Doppler velocities near 300 m s−1. The possibility exists that the proposed current-generator model is at the origin of the observed mid-latitude Farley-Buneman waves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0992-7689
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract HF radar observations of mid-latitude sporadic-E irregularities carried out with the Valensole radar in South France are compared with simultaneous ionosonde measurements underneath the irregularity zones. In a previous study of Valensole radar data, it has been shown that HF backscatter from the night-time mid-latitude E region is usually associated with largescale wave-like modulations. To obtain more information on the geophysical conditions prevailing during backscatter events, a new experiment was performed which also included a vertical ionosonde beneath the scattering region. The data to be presented here are from two periods when radar scattering appeared simultaneously with large variations in the virtual height and the Doppler velocity of F-layer reflected echoes measured with the vertical ionosonde, indicating very clearly the passage of atmospheric gravity waves (AGWs). The effect of the atmospheric waves on the sporadic-E layer is not always as marked as it is in the F region. In the first event, the passage of the AGWs is accompanied by an upward followed by a downward movement of the Es-layer. The apparent descending movement of the Es-layer from 135 to 110km in less than 10 min corresponded to a positive (downward) Doppler velocity of 35 m/s measured by the vertical ionosonde, and was accompanied by a range variation in the radar scattering region with a negative rate of about 90–110 m/s. In the second event, the Es-layer is not as strongly disturbed as in the previous one, but, nevertheless, the range variations of the scattering region can still be associated with height fluctuations of the Es-layer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...