ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-11
    Description: Solar radiation incident at the Earth’s surface (Rs) is an essential component of the total energy exchange between the atmosphere and the surface. Reanalysis data have been widely used, but a comprehensive validation using surface measurements is still highly needed. In this study, we evaluated the Rs estimates from six current representative global reanalyses (NCEP–NCAR, NCEP-DOE; CFSR; ERA-Interim; MERRA; and JRA-55) using surface measurements from different observation networks [GEBA; BSRN; GC-NET; Buoy; and CMA] (674 sites in total) and the Earth’s Radiant Energy System (CERES) EBAF product from 2001 to 2009. The global mean biases between the reanalysis Rs and surface measurements at all sites ranged from 11.25 W/m2 to 49.80 W/m2. Comparing with the CERES-EBAF Rs product, all the reanalyses overestimate Rs, except for ERA-Interim, with the biases ranging from −2.98 W/m2 to 21.97 W/m2 over the globe. It was also found that the biases of cloud fraction (CF) in the reanalyses caused the overestimation of Rs. After removing the averaged bias of CERES-EBAF, weighted by the area of the latitudinal band, a global annual mean Rs values of 184.6 W/m2, 180.0 W/m2, and 182.9 W/m2 were obtained over land, ocean, and the globe, respectively.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-01
    Description: Recently, studies on the use of polymer nanomaterial composites as pour-point depressants (PPD) have drawn much attention, but the crystallization properties and improved rheological performance of waxy crude oils using nanoclay-based composite PPDs have rarely been reported. In this paper, montmorillonite (Mnt) was first organically modified using octadecyltrimethylammonium chloride (C21H46NCl, or stearyltrimethylammonium chloride) in aqueous solution. Then, the organically modified Mnt (OMnt) material was dispersed into a polyoctadecylacrylate (POA) matrix to prepare a POA/OMnt composite PPD by melt blending. The composition, structure, and morphology of Mnt, OMnt, and the POA/OMnt composite PPDs were investigated. The results showed that the OMnt and POA were compatible and that the OMnt was exfoliated into several sheets in the POA matrix. Subsequently, the isothermal crystallization kinetics of the POA/OMnt composite PPDs showed that small amounts of OMnt had a dramatic impact on POA chain motion during crystallization and facilitated POA crystallization. After it was added to a waxy crude oil, the POA/OMnt composite PPDs produced better rheological properties and performance than identical concentrations of the neat POA. The POA/OMnt composite PPDs can act as wax nucleation sites for wax molecule precipitation and result in larger and more compact wax crystal flocs, which adversely affect the formation of a wax crystal network and, thus, favor the improvement of waxy crude oil rheology.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...