ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 1984-08-01
    Beschreibung: There is a need to provide quantitative relationships that will allow agronomists to estimate accurately the nitrogen-supplying power of soils while taking into account both temperature and soil moisture variations. The procedure for estimating net nitrogen mineralization proposed by Stanford and co-workers was used to determine Arrhenius relationships between the rate constants (k) and absolute temperature (°K) for 33 virgin and cultivated Western Canadian prairie surface (0–15 cm) soils. There was no significant difference in Arrhenius relationship between soils within each soil zone; thus, a single average Arrhenius equation was calculated per soil zone. Average Q10 for the Brown chernozemic soils was 2.75, for the Dark Brown, thin Black and thick Black chernozems, 2.18, and for the Gray luvisols, 2.0. These Q10 values are as high or higher than those reported in other parts of the world and may be related to the degree of degradation of the soil organic matter in these various soils. Culture had no marked effect on Q10 but sandy soils had higher Q10 than loams and clays. An equation for estimating net nitrogen mineralization for the Wood Mountain loam (a Brown chernozem) was tested using data from a previous study. The results were quite satisfactory, especially when the test data were derived under laboratory conditions where moisture was well controlled. The temperature functions presented herein can be used together with moisture functions and potentially mineralizable nitrogen results published earlier to make first estimates of net nitrogen mineralized during the growing season in the soils tested. Key words: Q10, Arrhenius relationship, potentially mineralizable nitrogen
    Print ISSN: 0008-4271
    Digitale ISSN: 1918-1841
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 1988-08-01
    Beschreibung: In a previous study a nitrogen mineralization model was developed by combining the potentially mineralizable nitrogen (No) with functions representing the effect of temperature and soil moisture on the mineralization rate constant (k). The model performed well in predicting the amount of net nitrogen mineralized during a growing season when soil was incubated in plastic bags placed in incubators or buried in the field. In the present study a similar model was used to estimate net nitrogen mineralized in situ from Wood Mountain loam an Orthic Brown soil at Swift Current, Saskatchewan under (a) summerfallow, (b) cropped-dryland and (c) cropped-irrigated conditions. Model output showed good agreement to field measurements especially for the first 45–60 d, but thereafter tended to underestimate the measured data particularly under cropped-dryland conditions. During a growing season the cropped-irrigated system predicted 69 kg ha−1 net nitrogen mineralized, but 81 kg ha−1 was measured; the corresponding values for summerfallow were 64 and 86 kg ha−1, and for cropped-dryland 36 and 52 kg ha−1, respectively. The model is not dynamic since it does not allow for No to be replenished continuously by nitrogen derived from decomposition of fresh residues and rhizosphere microbial biomass. Net nitrogen mineralized from this source might explain at least part of the underestimate predicted by the model. Other sources of possible discrepancy could be imprecision in measuring the mineralization of nitrogen and in estimating the parameters in the model. Nonetheless, it was established that one of the main shortcomings of the model was that it underestimated the amount of nitrogen mineralized whenever the soil became very dry and was then rewetted by rainfall. This was probably because the latter process resulted in large flushes in mineral nitrogen in situ while in the laboratory estimate of No and k, this effect is not adequately simulated. Key words: Q10, No, N mineralization, rate constant, temperature function
    Print ISSN: 0008-4271
    Digitale ISSN: 1918-1841
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 1970-06-01
    Beschreibung: Cylinders of a loam soil were placed in the field in late fall and sampled in midwinter and early spring. In soil wetted to near field capacity, nitrate and moisture moved upwards in winter and downwards again in early spring. The amount of movement was negligible in a soil wet to near the wilting percentage. To inhibit nitrification, N-serve was applied in 10 cm of water to field plots (120 × 120 cm) in late fall. Other plots received water but no N-serve. Regular monitoring of soil nitrate, exchangeable ammonium, and soil moisture and temperature in the top 90 cm of these plots showed evidence of upward moisture and nitrate movement as the soil froze. Large and sudden unexplainable decreases in exchangeable ammonium occurred following steady fall build-up.
    Print ISSN: 0008-4271
    Digitale ISSN: 1918-1841
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2005-09-01
    Beschreibung: There is a need to develop verifiable algorithms that can be easily applied to estimate carbon sequestration in soils. A simple process-based empirical model, driven primarily by soil texture and crop residue input, was developed to account for changes in soil organic carbon (SOC) in Chernozemic soils on the Canadian prairies. The model was used to estimate SOC change under no-till and continuous cropping compared with conventional tillage and rotations with fallow. Using this model, C sequestration due to continuous cropping compared with fallow-containing rotations was determined to be 0.09 Mg C ha-1yr-1 for the Brown and Dark Brown, and 0.05 Mg C ha-1 yr-1 for the Black and Dark Gray/Gray soil zones. The rate of C sequestration as a result of continuous cropping was positively related to the frequency of fallow, which decreases on the prairies from the Brown, Dark Brown, and Black to the Dark Gray/Gray soil zones. Using this model average C sequestration when conventional tillage was converted to no-till, was 0.13, 0.23, 0.34, and 0.25 Mg C ha-1 yr-1 for the same soil zones, respectively. Combined gains due to no-till and continuous cropping in comparison with conventional tillage and fallow-containing rotations were determined to be 0.22, 0.32, 0.39, and 0.30 Mg C ha-1 yr-1 for the Brown, Dark Brown, Black and Dark Gray/Gray soil zones, respectively. Based on Agricultural Census of Canada data in 1996 and 2001, the amount of “C sequestered” due to the adoption of no-till was estimated to be 1.23 million Mg of C in 1996 and 1.72 million Mg of C in 2001, which is approximately 10% of the total greenhouse gas emissions from the agricultural sector in Canada. This simple process-based empirical model could serve as a useful tool for soil scientists to use in assessing soil sustainability and C sequestration in the Canadian prairies. It would also assist policy makers in understanding how various scenarios of improved management will influence future greenhouse gas emissions on agricultural soils. Key words: Soil organic carbon, no-till, fallow, crop rotation
    Print ISSN: 0008-4271
    Digitale ISSN: 1918-1841
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2007-03-01
    Beschreibung: Using a revised Intergovernmental Panel on Climate Change (IPCC) methodology and the process-based model DeNitrification and DeComposition (DNDC), we estimated N2O emissions from agroecosystems in Canada for each census year from 1981 to 2001. Based on the IPCC methodology, direct emissions of N2O ranged from 12.9 to 17.3 with an average of 15.1 Tg CO2 equivalents, while the DNDC model predicted values from 16.0 to 24.3 with an average of 20.8 Tg CO2 equivalents over the same period, and showed a large interannual variation reflecting weather variability. On a provincial basis, emissions estimated by IPCC and DNDC methods were highest in Alberta, Saskatchewan and Ontario, intermediate for Manitoba and Quebec and lowest in British Columbia and the Atlantic provinces. The greatest source of emissions estimated by the IPCC method was from N fertilizer (avg. 6.32 Tg CO2 equiv. in Canada), followed by crop residues (4.24), pasture range and paddocks (PRP) (2.77), and manure (1.65). All sources of emissions, but especially those from fertilizers, increased moderately over time. Monte Carlo Simulation was used to determine the uncertainty associated with the 2001 emission estimates for both IPCC and DNDC methodologies. The simulation generated most likely values of 19.2 and 16.0 Tg CO2 equivalents for IPCC and DNDC, respectively, with uncertainties of 37 and 41%, respectively. Values for the IPCC estimates varied between 28% for PRP and manure and 50% for N fertilizer and crop residues. At the provincial level, uncertainty ranged between 15 and 47% with higher values on the prairies. Sensitivity analyses for IPCC estimates showed crop residues as the most important source of uncertainty followed by synthetic N-fertilizers. Our analysis demonstrated that N2O emissions can be effectively estimated by both the DNDC and IPCC methods and that their uncertainties can be effectively estimated by Monte Carlo Simulation. Key words: Nitrous oxide, IPCC, DNDC model, Uncertainty analysis, Monte Carlo Simulation
    Print ISSN: 0008-4271
    Digitale ISSN: 1918-1841
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 1986-11-01
    Beschreibung: The effects of application of manure and P fertilizer on wheat yields in a fallow-wheat-wheat rotation on a Black Rego Chernozemic clay soil have been studied for 36 yr. The objective of this study was to identify the effects of manure on soil characteristics that could be related to the reported progressive yield increases over time and an apparent improvement in soil tilth. Soil samples were taken in 1982 from the check (no treatment), and from treatments receiving 13.4, 20.2 and 26.9 t ha−1 of manure applied each fallow year, and 112 kg ha−1 of seed-placed 11-48-0 applied to wheat after summerfallow. Soil physical and P-related parameters were determined for depth increments to 30 cm; the total-N and 15N data to 90 cm; other data were for the 0- to 7.5-cm depth. Manure had no effect on bulk density or hydraulic conductivity. However, it increased the total C and humic acid (HA) content of the soil, the percent of soil C as HA-C, the C concentration in humin, and the percent of total soil N as humin-N. Manure significantly increased the percent of HA-N but not humin-N present as amino acid and amino sugar-N, but increased amino acids and the amino sugars in the humin hydrolysate. The net rate of N mineralization and the available forms of inorganic P were all increased significantly by manure. The natural 15N-abundance technique showed that a significant though small proportion of soil N was derived from manure. Manure had no effect on soil microbial biomass C and N, soil respiration, and the quantity of potentially mineralizable N. Applied P had no effect on N-related parameters measured; its effect on available P was not measured. It was concluded that manure increased crop yields by improving the N- and P-supplying power of the soil, and improving the physical environment of the soil through its effects on the humic colloids. Key words: Humic substances, soil P fractions, soil biological properties, natural 15N abundance, net N mineralization
    Print ISSN: 0008-4271
    Digitale ISSN: 1918-1841
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 1987-08-01
    Beschreibung: The effects of crop rotation and fertilization on moisture conserved and moisture use efficiency (MUE) were assessed on a loam soil in the Brown soil zone of southwestern Saskatchewan over the period 1967–1984. Six spring wheat rotations were examined that were either fertilized at soil test recommended rates of N and P, or N or P was withheld according to rotation specifications. MUE in this study was calculated as grain yield divided by sum of 1 May to 31 Aug. precipitation plus soil moisture used between seeding and harvest. In the first fall after harvest 8–11 % of the precipitation received was stored in soil in all rotations. During the first winter 3–5 times as much moisture was stored as was stored in the fall; compared to continuous wheat receiving only P, continuous wheat fertilized with N and P increased moisture storage by 12 mm due to a larger amount of crop residues left in the field. In the first 9 mo of summer-fallow, 33% of the precipitation was stored, but over the entire 21-mo fallow period only 18% was stored. At seeding, fallow-seeded crops receiving P annually had 43 mm more moisture in the 120-cm profile than stubble-seeded wheat that received N and P. Failure to apply P to wheat grown on fallow in the F-W-W rotations reduced spring soil moisture at seeding by about 8 mm. Wheat seeded on fallow retained more moisture in soil compared to wheat seeded on stubble until the shot blade stage, but at harvest and fall sampling there was no difference. At harvest there was no available moisture in the top 90 cm of soil. Wheat made greater use of stored soil moisture in dry years than in wet. Wheat grown on fallow that received P used 102 mm of soil moisture per year; wheat on fallow receiving no P used 93 mm; wheat on stubble receiving N and P used 61 mm and continuous wheat receiving no N used 50 mm. The 18-yr average MUE was as high as 6.9 kg ha−1 mm−1 for wheat on fallow that received P and as low as 5.1 kg ha−1 mm−1 for continuous wheat receiving no N. These values were much greater than those reported 30–40 yr ago for this area and reflect improved crop management and crop varieties now used. The improvement in MUE due to fertilizer was greater in later years due to the cumulative effect of fertilizer on soil quality, crop production and crop residues which enhanced moisture available for use. When efficiency was based on the precipitation received from harvest to harvest continuous wheat receiving N and P had the highest efficiency (3.75 kg ha−1 mm−1) and the 2-yr fallow-wheat rotation the lowest (2.60 kg ha−1 mm−1). Key words: Water use efficiency, WUE, nitrogen, phosphorus and moisture use, summerfallow and moisture conservation
    Print ISSN: 0008-4271
    Digitale ISSN: 1918-1841
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 1984-02-01
    Beschreibung: In 1982, six crop rotation treatments that were initiated in 1967 on a Orthic Brown Chernozemic loam were sampled for soil NO3-N and moisture to a depth of 240 cm. Soil samples were taken on 18 May and 10 June from all treatments, on 2 Sept. on fallow treatments only, and on 14 Oct. from cropped treatments. Precipitation during the sampling period was about 23% above the long-term average. It was estimated that at least 123 kg NO3-N∙ha−1 were leached from the top 240 cm of fallow soils. Leaching appeared to result from a portion of the precipitation moving through macro soil pores. There was evidence that water and NO3-N might also move upwards from below the 240-cm depth. Of the six rotations examined, the 2-yr and 3-yr spring wheat (Triticum aestivum L.) rotations lost the most NO3-N. The presence of fall rye (Secale cereale L.) in a fallow-rye-wheat rotation was very effective in reducing NO3-N losses. Spring wheat, when grown continuously, was also very effective in reducing NO3-N losses but even here there was some evidence of leaching beyond the root zone. Application of fertilizer N and P at amounts based on soil test recommendations reduced NO3-N leached. It was estimated from long-term precipitation data, that over the past 100 yr about 20% of the soil organic N that was present at the time of breaking the land has been lost from the soil via leaching. It was concluded that leaching losses of N from the soils on the Canadian prairies had been greatly underestimated and were partly responsible for losses attributed to the more visible wind erosion. Key words: Nitrate movement, crop rotations, fertilizer and leaching, summerfallow and leaching, bimodal leaching
    Print ISSN: 0008-4271
    Digitale ISSN: 1918-1841
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 1983-08-01
    Beschreibung: The distribution of NO3-N in the soil, and N uptake by the crop during the first 12 yr of a long-term rotation study at Swift Current, Saskatchewan were studied. A considerable amount of NO3-N appeared to be leached beyond the rooting zone of the cereal crop in years of above average precipitation and also in some relatively dry years with heavy spring rains. Thus, leaching of NO3-N seemed to occur even under continuous wheat rotations. At all times there was considerable NO3-N situated at the 60- to 120-cm depth. In wet years N uptake by the plants reduced the amount of NO3-N located in the subsoil, but in dry years the amount of NO3-N in the subsoil remained higher throughout the growing season. The latter could result in groundwater pollution, especially if such a soil was fallowed the next year. Fall rye (Secale cereale L.) made more efficient use of mineral N than spring-sown crops. In dry years more NO3-N persisted in the root zone of N-fertilized wheat than in the root zone of unfertilized wheat, but in wet and average years there was little difference due to N application. The average rate of net NO3-N production in fallow land from spring thaw to freeze-up (166 days) was 107 kg∙ha−1. Values ranged from about 60 to 175 kg∙ha−1 with the lowest values being obtained during very dry or very wet years. The quantity of N mineralized (kg∙ha−1) between spring thaw and freeze-up was related to precipitation (mm) by the equation Nmin = 29.0 + 0.20 precipitation for the 0- to 60-cm depth (R2 = 0.65*). Key words: Nitrate leaching, N uptake, crop rotations, N mineralization rate
    Print ISSN: 0008-4271
    Digitale ISSN: 1918-1841
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2011-02-01
    Beschreibung: Selles, F., Campbell, C. A., Zentner, R. P., Curtin, D., James, D. C. and Basnyat, P. 2011. Phosphorus use efficiency and long-term trends in soil available phosphorus in wheat production systems with and without nitrogen fertilizer. Can. J. Soil Sci. 91: 39–52. Efficient use of phosphorus (P) in crop production is important for economic and environmental reasons, and to prolong the life of a limited resource. Short-term studies often show low recovery of fertilizer P, but P use efficiency may be underestimated because the value of residual P in the soil is ignored. Our objective was to determine fertilizer P use efficiency in two wheat production systems [continuous wheat (CW) and a 3-yr rotation of summer fallow-wheat-wheat (FWW)] using data from a 39-yr study (1967–2005) at Swift Current, SK. Each rotation received either P only (P) or nitrogen plus P (NP) fertilizer. Annual grain P removal was monitored (all straw was returned to the soil) and changes in soil available P (0- to 15-cm layer) were measured by the Olsen bicarbonate method. In 1993, subplots which received no additional P were established to evaluate the residual effect of P fertilizer applied in the preceding 27 yr. Where P was applied each year, grain P removal averaged 54 to 78% of fertilizer P, with values as high as 65 to 109% in 1994 to 2005, the period of lowest water deficit. The P-only treatments removed 13% less P in grain, on average, than NP treatments. In the P-nly systems, Olsen P content increased linearly with time, but in the NP systems it reached a maximum after 20–22 yr and then stabilized. The cumulative P balance (fertilizer P minus P removed in grain) accounted for 60% of the variability in Olsen P accumulation over the course of the experiment. In CW, Olsen P content increased by 0.15 kg ha−1 for each kg ha−1 of P added in excess of crop removal. The rate of Olsen P accumulation was greater (0.20 kg ha−1 for each kg ha−1 of excess fertilizer P) in the FWW rotation possibly due to P mineralization during the summer fallow year. When P was withheld between 1994 and 2005, total grain production in the CW rotation was reduced slightly (by 10%), but there was no significant effect on FWW. Crop P removal (1967–2005) where P was withheld in the final 12 yr was equivalent to 105 and 90% of fertilizer P added to the NP and P-only systems, respectively. We concluded that residual P in prairie soils is retained in forms that are available to plants; wheat crops may therefore recover close to 100% of applied fertilizer P given sufficient time.
    Print ISSN: 0008-4271
    Digitale ISSN: 1918-1841
    Thema: Geologie und Paläontologie , Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...