ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1987-01-01
    Description: A solution has been obtained for steady propagation of a two-dimensional fluid fracture driven by buoyancy in an elastic medium. The problem is formulated in terms of an integro-differential equation governing the elastic deformation, coupled with the differential equation of lubrication theory for viscous flow in the crack. The numerical treatment of this system is carried out in terms of an eigenfunction expansion of the cavity shape, in which the coefficients are found by use of a nonlinear constrained optimization technique. When suitably non-dimensionalized, the solution appears to be unique. It exhibits a semi-infinite crack of constant width following the propagating fracture. For each value of the stress intensity factor of the medium, the width and propagation speed are determined. The results are applied to the problem of the vertical ascent of magma through the earth's mantle and crust. Values obtained for the crack width and ascent velocity are in accord with observations. This mechanism can explain the high ascent velocities required to quench diamonds during a Kimberlite eruption. The mechanism can also explain how basaltic eruptions can carry large mantle rocks (xenoliths) to the surface. © 1987, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1962-08-01
    Description: It is the purpose of this paper to solve a boundary-value problem posed by induction electromagnetic pumps and generators. Solutions are obtained by an expansion technique and a momentum method for the laminar, incompressible flow problem. For large values of the interaction parameter (μ2σH 2 0λ/ρμ e viscous effects are shown to be restricted to periodic boundary layers. In regions of high-field strength a local Hartmann solution is valid. Where the applied field is weak an inertial boundary layer is present which thickens in the upstream direction. A logical explanation of this phenomenon is given. The condition that a boundary-layer type flow exist is obtained and is shown to be in general satisfied. The results show that inviscid theory may be used to calculate the overall performance of electromagnetic pumps and generators while the boundary-layer theory developed here may be used to obtain the wall shear stress. © 1962, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1985-03-01
    Description: We consider the penetration of a solid medium by a foreign body which is large enough for frictional heating to melt the medium and maintain a thin liquid layer ahead of the body. This study is motivated by the possibility of the Earth's core having been formed by liquid iron diapirs melting their way through the solid, deformable mantle. Our principal results are the existence of a critical size for the body for the motion to be maintained under gravity and the ease with which an immiscible liquid body can penetrate at constant velocity compared to a solid one. © 1985, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1970-08-28
    Description: A similarity solution has been obtained for a radiation-driven shock wave. Radiation propagating radially inwards is completely absorbed in the shock layer of a spherical, expanding shock wave. For a strong shock wave and a constant power input a similarity solution is obtained. It is found that the radial position of the shock wave rs ∼ t⅗. The shock wave propagates as an overdriven detonation. The jump conditions and complete flow field are obtained. © 1970, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1974-06-19
    Description: The approximations implicit in Bénard convection have been modified to include viscous dissipation. It is shown that both the influence of an adiabatic temperature gradient and of viscous dissipation are governed by the same dimensionless parameter Di = αgh/cp. Numerical calculations of finite amplitude convection are given for finite values of Di. It is found that increasing Di decreases flow velocities and finally stabilizes the flow. © 1974, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1967-04-12
    Description: A solution is obtained for steady, cellular convection when the Rayleigh number and the Prandtl number are large. The core of each two-dimensional cell contains a highly viscous, isothermal flow. Adjacent to the horizontal boundaries are thin thermal boundary layers. On the vertical boundaries between cells thin thermal plumes drive the viscous flow. The non-dimensional velocities and heat transfer between the horizontal boundaries are found to be functions only of the Rayleigh number. The theory is used to test the hypothesis of large scale convective cells in the earth's mantle. Using accepted values of the Rayleigh number for the earth's mantle the theory predicts the generally accepted velocity associated with continental drift. The theory also predicts values for the heat flux to the earth's surface which are in good agreement with measurements carried out on the ocean floors.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1971-05-14
    Description: The influence of large variations of viscosity on convection in a layer of fluid heated from below has been investigated. Solutions for the flow and temperature fields were obtained numerically assuming infinite Prandtl number, free-surface boundary conditions, and two-dimensional motion of fixed horizontal wavelength. The effects of a temperature-dependent and a depth-dependent viscosity were each studied; calculations were also carried out using a temperature-and depth-dependent viscosity model appropriate to the earth's mantle. © 1971, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1983-02-01
    Description: In this paper we derive solutions for two stagnation flows of an incompressible Newtonian fluid with infinite Prandtl number and exponentially temperature-dependent viscosity. The two stagnation flows are the impingement of a hot fluid against a cold wall and against a cold half-space of the same material. We find that the same solutions apply to both axisymmetric and two-dimensional flows. We apply these solutions to the thinning of the Earth’s lithosphere by a mantle plume. The equilibrium lithospheric thickness and the rate of lithospheric thinning are obtained. © 1983, Cambridge University Press. All rights reserved.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...