ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Cambridge Univ. Press
    In:  Antarctic Science, 26 (3). pp. 309-326.
    Publication Date: 2015-08-03
    Description: Mesoscale model simulations were conducted for the Weddell Sea region for the autumn and winter periods of 2008 using a high-resolution, limited-area, non-hydrostatic atmospheric model. A sea ice–ocean model was run with enhanced horizontal resolution and high-resolution forcing data of the atmospheric model. Daily passive thermal and microwave satellite data was used to derive the polynya area in the Weddell Sea region. The focus of the study is on the formation of polynyas in the coastal region of Coats Land, which is strongly affected by katabatic flows. The polynya areas deduced from two independent remote sensing methods and data sources show good agreement, while the results of the sea ice simulation show some weaknesses. Linkages between the pressure gradient force composed of a katabatic and a synoptic component, offshore wind regimes and polynya area are identified. It is shown that the downslope surface offshore wind component of Coats Land is the main forcing factor for polynya dynamics, which is mainly steered by the offshore pressure gradient force, where the katabatic force is the dominant term. We find that the synoptic pressure gradient is opposed to the katabatic force during major katabatic wind events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    International Glaciological Society | Cambridge Univ. Press
    In:  Annals of Glaciology, 53 (60). pp. 303-314.
    Publication Date: 2020-05-13
    Description: The Finite Element Sea-ice Ocean Model (FESOM) has been augmented by an ice-shelf component with a three-equation system for diagnostic computation of boundary layer temperature and salinity. Ice-shelf geometry and global ocean bathymetry have been derived from the RTopo-1 dataset. A global domain with a triangular mesh and a hybrid vertical coordinate is used. To evaluate sub-ice-shelf circulation and melt rates for present-day climate, the model is forced with NCEP reanalysis data. Basal mass fluxes are mostly realistic, with maximum melt rates in the deepest parts near the grounding lines and marine ice formation in the northern sectors of the Ross and Filchner–Ronne Ice Shelves, Antarctica. Total basal mass loss for the ten largest ice shelves reflects the importance of the Amundsen Sea ice shelves; the Getz Ice Shelf is shown to be a major meltwater contributor to the Southern Ocean. Despite their modest melt rates, the ‘cold water’ ice shelves in the Weddell Sea are still substantial sinks of continental ice in Antarctica. Discrepancies between the model and observations can partly be attributed to deficiencies in the forcing data or to (sometimes unavoidable) smoothing of ice-shelf and bottom topographies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...