ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: In order to quantify the relative importance of individual boundary conditions and forcings, including greenhouse gases, ice sheets, and Earth's orbital parameters, on determining Last Glacial Maximum (LGM) climate, we have performed a series of LGM experiments using a state-of-the-art climate model AWI-ESM, in which different combinations of boundary conditions and forcings have been applied following the protocol of Paleoclimate Modelling Intercomparison Project phase 4 (PMIP4). In good agreement with observational proxy records, a general colder and drier climate is simulated in our full-forced LGM experiment as compared to the present-day simulation. Our simulated results from non-full-forced sensitivity simulations reveal that both the greenhouse gases and ice sheets play a major role in defining the anomalous LGM surface temperature compared to today. Decreased greenhouse gases in LGM as compared to present day leads to a non-uniform global cooling with polar amplification effect. The presence of LGM ice sheets favors a warming over the Arctic and northern Atlantic oceans in boreal winter, as well as a cooling over regions with the presence of ice sheets. The former is induced by a strengthening in the Atlantic meridional overturning circulation (AMOC) transporting more heat to high latitudes, whilst the latter is due to the increased surface albedo and elevation of ice sheets. We find that the Northern Hemisphere monsoon precipitation is influenced by the opposing effects of LGM greenhouse gases and ice sheets. Specifically, the presence of ice sheets leads to significant drying in the Northern Hemisphere monsoon regions, while a reduction in greenhouse gases results in increased monsoon rainfall. Based on our model results, continental ice sheets exert a major control on atmospheric dynamics and the variability of El Niño–Southern Oscillation (ENSO). Moreover, our analysis also implies a nonlinearity in climate response to LGM boundary conditions and forcings.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Numerical simulations employing prognostic stable water isotopes can not only facilitate our understanding of hydrological processes and climate change but also allow for a direct comparison between isotope signals obtained from models and various archives. In the current work, we describe the performance and explore the potential of a new version of the Earth system model AWI-ESM (Alfred Wegener Institute Earth System Model), labeled AWI-ESM-2.1-wiso, in which we incorporated three isotope tracers into all relevant components of the water cycle. We present here the results of pre-industrial (PI) and mid-Holocene (MH) simulations. The model reproduces the observed PI isotope compositions in both precipitation and seawater well and captures their major differences from the MH conditions. The simulated relationship between the isotope composition in precipitation (δ18Op) and surface air temperature is very similar between the PI and MH conditions, and it is largely consistent with modern observations despite some regional model biases. The ratio of the MH–PI difference in δ18Op to the MH–PI difference in surface air temperature is comparable to proxy records over Greenland and Antarctica only when summertime air temperature is considered. An amount effect is evident over the North African monsoon domain, where a negative correlation between δ18Op and the amount of precipitation is simulated. As an example of model applications, we studied the onset and withdrawal date of the MH West African summer monsoon (WASM) using daily variables. We find that defining the WASM onset based on precipitation alone may yield erroneous results due to the substantial daily variations in precipitation, which may obscure the distinction between pre-monsoon and monsoon seasons. Combining precipitation and isotope indicators, we suggest in this work a novel method for identifying the commencement of the WASM. Moreover, we do not find an obvious difference between the MH and PI periods in terms of the mean onset of the WASM. However, an advancement in the WASM withdrawal is found in the MH compared to the PI period due to an earlier decline in insolation over the northern location of Intertropical Convergence Zone (ITCZ).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Atmospheric Chemistry and Physics, COPERNICUS GESELLSCHAFT MBH, 14(11), pp. 5853-5869, ISSN: 1680-7316
    Publication Date: 2014-06-23
    Description: Global warming is associated with large increases in surface air temperature in Siberia. Here, we apply the isotope-enabled atmospheric general circulation model ECHAM5-wiso to explore the potential of water isotope measurements at a recently opened monitoring station in Kourovka (57.04° N, 59.55° E) in order to successfully trace climate change in western Siberia. Our model is constrained to atmospheric reanalysis fields for the period 1957–2013 to facilitate the comparison with observations of δD in total column water vapour from the GOSAT satellite, and with precipitation δ18O measurements from 15 Russian stations of the Global Network of Isotopes in Precipitation. The model captures the observed Russian climate within reasonable error margins, and displays the observed isotopic gradients associated with increasing continentality and decreasing meridional temperatures. The model also reproduces the observed seasonal cycle of δ18O, which parallels the seasonal cycle of temperature and ranges from −25 ‰ in winter to −5 ‰ in summer. Investigating West Siberian climate and precipitation δ18O variability during the last 50 years, we find long-term increasing trends in temperature and δ18O, while precipitation trends are uncertain. During the last 50 years, winter temperatures have increased by 1.7 °C. The simulated long-term increase of precipitation δ18O is at the detection limit (〈1 ‰ per 50 years) but significant. West Siberian climate is characterized by strong interannual variability, which in winter is strongly related to the North Atlantic Oscillation. In winter, regional temperature is the predominant factor controlling δ18O variations on interannual to decadal timescales with a slope of about 0.5 ‰ / °C. In summer, the interannual variability of δ18O can be attributed to short-term, regional-scale processes such as evaporation and convective precipitation. This finding suggests that precipitation δ18O has the potential to reveal hydrometeorological regime shifts in western Siberia which are otherwise difficult to identify. Focusing on Kourovka, the simulated evolution of temperature, δ18O and, to a smaller extent, precipitation during the last 50 years is synchronous with model results averaged over all of western Siberia, suggesting that this site will be representative to monitor future isotopic changes in the entire region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-06
    Description: Water stable isotopologues provide integrated tracers of the atmospheric water cycle, affected by changes in air mass origin, non-convective and convective processes and continental recycling. Novel remote sensing and in situ measuring techniques have recently offered opportunities for monitoring atmospheric water vapour isotopic composition. Recently developed infrared laser spectrometers allow for continuous in situ measurements of surface water vapour δDv and δ18Ov. So far, very few intercomparisons of measurements conducted using different techniques have been achieved at a given location, due to difficulties intrinsic to the comparison of integrated with local measurements. Nudged simulations conducted with high-resolution isotopically enabled general circulation models (GCMs) provide a consistent framework for comparison with the different types of observations. Here, we compare simulations conducted with the ECHAM5-wiso model with two types of water vapour isotopic data obtained during summer 2012 at the forest site of Kourovka, western Siberia: hourly ground-based FTIR total atmospheric columnar δDv amounts, and in situ hourly Picarro δDv measurements. There is an excellent correlation between observed and predicted δDv at surface while the comparison between water column values derived from the model compares well with FTIR estimates.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-16
    Description: The research area of climate field reconstructions has developed strongly during the past 20 years, motivated by the need to understand the complex dynamics of the earth system in a changing climate. Climate field reconstructions aim to build a consistent gridded climate reconstruction of different variables, often from a range of climate proxies, using either statistical tools or a climate model to fill the gaps between the locations of the proxy data. Commonly, large-scale climate field reconstructions covering more than 500 years are of annual resolution. In this method study, we investigate the potential of seasonally resolved climate field reconstructions based on oxygen isotope records from Greenland ice cores and an isotope-enabled climate model. Our analogue-type method matches modeled isotope patterns in Greenland precipitation to the patterns of ice core data from up to 14 ice core sites. In a second step, the climate variables of the best-matching model years are extracted, with the mean of the best-matching years comprising the reconstruction. We test a range of climate reconstructions, varying the definition of the seasons and the number of ice cores used. Our findings show that the optimal definition of the seasons depends on the variability in the target season. For winter, the vigorous variability is best captured when defining the season as December–February due to the dominance of large-scale patterns. For summer, which has weaker variability, albeit more persistent in time, the variability is better captured using a longer season of May–October. Motivated by the scarcity of seasonal data, we also test the use of annual data where the year is divided during summer, that is, not following the calendar year. This means that the winter variability is not split and that the annual data then can be used to reconstruct the winter variability. In particularly when reconstructing the sea level pressure and the corresponding main modes of variability, it is important to take seasonality into account, because of changes in the spatial patterns of the modes throughout the year. Targeting the annual mean sea level pressure for the reconstruction lowers the skill simply due to the seasonal geographical shift of the circulation modes. Our reconstructions based on ice core data also show skill for the North Atlantic sea surface temperatures, in particularly during winter for latitudes higher than 50◦ N. In addition, the main modes of the sea surface temperature variability are qualitatively captured by the reconstructions. When testing the skill of the reconstructions using 19 ice cores compared to the ones using eight ice cores, we do not find a clear advantage of using a larger data set. This could be due to a more even spatial distribution of the eight ice cores. However, including European tree-ring data to further constrain the summer temperature reconstruction clearly improves the skill for this season, which otherwise is more difficult to capture than the winter season.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 17(2), pp. 805-824, ISSN: 1814-9332
    Publication Date: 2021-07-26
    Description: We present a climatology of the near-sea-surface temperature (NSST) anomaly and the sea-ice extent during the Last Glacial Maximum (LGM, 23000–19000 years before present) mapped on a global regular 1◦ × 1◦ grid. It is an extension of the Glacial Atlantic Ocean Mapping (GLAMAP) reconstruction of the Atlantic NSST based on the faunal and floral assemblage data of the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO) project and several recent estimates of the LGM sea-ice extent. Such a gridded climatology is highly useful for the visualization of the LGM climate, calculation of global and regional NSST averages, and estimation of the equilibrium climate sensitivity, as well as a boundary condition for atmospheric general circulation models. The gridding of the sparse NSST reconstruction was done in an optimal way using the Data-Interpolating Variational Analysis (DIVA) software, which takes into account the uncertainty in the reconstruction and includes the calculation of an error field. The resulting Glacial Ocean Map (GLOMAP) confirms the previous findings by the MARGO project regarding longitudinal and meridional NSST differences that were greater than today in all oceans. Taken at face value, the estimated global and tropical cooling would imply an equilibrium climate sensitivity at the lower end of the currently accepted range. However, because of anticipated changes in the seasonality and thermal structure of the upper ocean during the LGM as well as uneven spatial sampling, the estimated cooling and implied climate sensitivity are likely to be biased towards lower values.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-07-26
    Description: Meridional atmospheric transport is an important process in the climate system and has implications for the availability of heat and moisture at high latitudes. Near-surface cold and warm temperature advection over the ocean in the context of extratropical cyclones additionally leads to important air–sea exchange. In this paper, we investigate the impact of these air–sea fluxes on the stable water isotope (SWI) composition of water vapour in the Southern Ocean’s atmospheric boundary layer. SWIs serve as a tool to trace phase change processes involved in the atmospheric water cycle and, thus, provide important insight into moist atmospheric processes associated with extratropical cyclones. Here we combine a 3-month ship-based SWI measurement data set around Antarctica with a series of regional high-resolution numerical model simulations from the isotope-enabled numerical weather prediction model COSMOiso. We objectively identify atmospheric cold and warm temperature advection associated with the cold and warm sector of extratropical cyclones, respectively, based on the air–sea temperature difference applied to the measurement and the simulation data sets. A Lagrangian composite analysis of temperature advection based on the COSMOiso simulation data is compiled to identify the main processes affecting the observed variability of the isotopic signal in marine boundary layer water vapour in the region from 35 to 70◦ S. This analysis shows that the cold and warm sectors of extratropical cyclones are associated with contrasting SWI signals. Specifically, the measurements show that the median values of δ18O and δ2H in the atmospheric water vapour are 3.8 ‰ and 27.9 ‰ higher during warm than during cold advection. The median value of the second-order isotope variable deuterium excess d, which can be used as a measure of non-equilibrium processes during phase changes, is 6.4 ‰ lower during warm than during cold advection. These characteristic isotope signals during cold and warm advection reflect the opposite air–sea fluxes associated with these large-scale transport events. The trajectory-based analysis reveals that the SWI signals in the cold sector are mainly shaped by ocean evaporation. In the warm sector, the air masses experience a net loss of moisture due to dew deposition as they are advected over the relatively colder ocean, which leads to the observed low d. We show that additionally the formation of clouds and precipitation in moist adiabatically ascending warm air parcels can decrease d in boundary layer water vapour. These findings illustrate the highly variable isotopic composition in water vapour due to contrasting air–sea interactions during cold and warm advection, respectively, induced by the circulation associated with extratropical cyclones. SWIs can thus potentially be useful as tracers for meridional air advection and other characteristics associated with the dynamics of the storm tracks over interannual timescales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 17(3), pp. 1119-1138, ISSN: 1814-9332
    Publication Date: 2021-07-26
    Description: Reconstruction of past changes in monsoon climate from speleothem oxygen isotope (δ18O) records is complex because δ18O signals can be influenced by multiple factors including changes in precipitation, precipitation recycling over land, temperature at the moisture source, and changes in the moisture source region and transport pathway. Here, we analyse 〉 150 speleothem records of the Speleothem Isotopes Synthesis and AnaLysis (SISAL) database to produce composite regional trends in δ18O in monsoon regions; compositing minimises the influence of site-specific karst and cave processes that can influence individual site records. We compare speleothem δ18O observations with isotope-enabled climate model simulations to investigate the specific climatic factors causing these regional trends. We focus on differences in δ18O signals between the mid-Holocene, the peak of the Last Interglacial (Marine Isotope Stage 5e) and the Last Glacial Maximum as well as on δ18O evolution through the Holocene. Differences in speleothem δ18O between the mid-Holocene and the Last Interglacial in the East Asian and Indian monsoons are small, despite the larger summer insolation values during the Last Interglacial. Last Glacial Maximum δ18O values are significantly less negative than interglacial values. Comparison with simulated glacial–interglacial δ18O shows that changes are principally driven by global shifts in temperature and regional precipitation. Holocene speleothem δ18O records show distinct and coherent regional trends. Trends are similar to summer insolation in India, China and southwestern South America, but they are different in the Indonesian–Australian region. Redundancy analysis shows that 37 % of Holocene variability can be accounted for by latitude and longitude, supporting the differentiation of records into individual monsoon regions. Regression analysis of simulated precipitation δ18O and climate variables show significant relationships between global Holocene monsoon δ18O trends and changes in precipitation, atmospheric circulation and (to a lesser extent) source area temperature, whereas precipitation recycling is non-significant. However, there are differences in regional-scale mechanisms: there are clear relationships between changes in precipitation and δ18O for India, southwestern South America and the Indonesian–Australian regions but not for the East Asian monsoon. Changes in atmospheric circulation contribute to δ18O trends in the East Asian, Indian and Indonesian–Australian monsoons, and a weak source area temperature effect is observed over southern and central America and Asia. Precipitation recycling is influential in southwestern South America and southern Africa. Overall, our analyses show that it is possible to differentiate the impacts of specific climatic mechanisms influencing precipitation δ18O and use this analysis to interpret changes in speleothem δ18O.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-05-21
    Description: In the context of the Arctic amplification of climate change affecting the regional atmospheric hydrological cycle, it is crucial to characterize the present-day moisture sources of the Arctic. The isotopic composition is an important tool to enhance our understanding of the drivers of the hydrological cycle due to the different molecular characteristics of water stable isotopes during phase change. This study introduces 2 years of continuous in situ water vapour and precipitation isotopic observations conducted since July 2015 in the eastern Siberian Lena delta at the research station on Samoylov Island. The vapour isotopic signals are dominated by variations at seasonal and synoptic timescales. Diurnal variations of the vapour isotopic signals are masked by synoptic variations, indicating low variations of the amplitude of local sources at the diurnal scale in winter, summer and autumn. Low-amplitude diurnal variations in spring may indicate exchange of moisture between the atmosphere and the snow-covered surface. Moisture source diagnostics based on semi-Lagrangian backward trajectories reveal that different air mass origins have contrasting contributions to the moisture budget of the Lena delta region. At the seasonal scale, the distance from the net moisture sources to the arrival site strongly varies. During the coldest months, no contribution from local secondary evaporation is observed. Variations of the vapour isotopic composition during the cold season on the synoptic timescale are strongly related to moisture source regions and variations in atmospheric transport: warm and isotopically enriched moist air is linked to fast transport from the Atlantic sector, while dry and cold air with isotopically depleted moisture is generally associated with air masses moving slowly over northern Eurasia.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Climate of the Past, Copernicus Publications, 12(11), pp. 2127-2143, ISSN: 1814-9332
    Publication Date: 2016-12-14
    Description: Winter (October to March) precipitation δ18OP and δDP values in central Europe correlate with the winter North Atlantic Oscillation index (wNAOi), but the causal mechanisms remain poorly understood. Here we analyse the relationships between precipitation-weighted δ18OP and δDP datasets (δ18Opw and δDpw) from European GNIP and ANIP stations and the wNAOi, with a focus on isotope gradients. We demonstrate that longitudinal δ18Opw and δDpw gradients across Europe (“continental effect”) depend on the wNAOi state, with steeper gradients associated with more negative wNAOi states. Changing gradients reflect a combination of air temperature and variable amounts of precipitable water as a function of the wNAOi. The relationships between the wNAOi, δ18Opw and δDpw can provide additional information from palaeoclimate archives such as European speleothems that primarily record winter δ18Opw. Comparisons between present-day and past European longitudinal δ18O gradients inferred from Holocene speleothems suggest that atmospheric pressure configurations akin to negative wNAO modes dominated the early Holocene, whereas patterns resembling positive wNAO modes were more common in the late Holocene, possibly caused by persistent shifts in the relative locations of the Azores High and the Icelandic Low.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...