ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Fresenius' Zeitschrift für analytische Chemie 51 (1912), S. 322-323 
    ISSN: 1618-2650
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1912-05-01
    Print ISSN: 1618-2642
    Electronic ISSN: 1618-2650
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 8 (2002), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The Sixth and Seventh Conference of the Parties (COP 6 and 7) at The Hague, Bonn and Marrakesh came to a final Agreement on the Kyoto Protocol, which is thus ready for ratification by the individual nations. The Agreement was only achieved by allowing countries to offset their fossil fuel emission targets (on average 95% of the 1990 emissions) by increasing biological carbon sequestration, and by trading carbon credits. Activities that would count as increasing biological carbon sequestration include afforestation and reforestation, and changes in management of agriculture and forestry. According to the Agreement reached in Marrakesh, biological carbon sequestration may reach an offset of up to 80% of the required reduction in fossil fuel emissions (4% of the 5% reduction commitment). We explain why the allowable offset rose as high during the course of the negotiations. It is highlighted that major unintended consequences may be a result of the policy as it stands in the Marrakesh Accord. Major losses of biodiversity and primary forest are expected. We present scientific concerns regarding verification, which lead to scientific doubts that the practices encouraged by the Agreement can actually increase sequestration under a full carbon accounting scheme. We explain that there is a ‘win-win’ option that would protect high carbon pools and biodiversity in an economically efficient way. But, this is not supported by the Agreement. Despite the very positive signal that most nations of the United Nations will devote major efforts towards climate protection, there remains a most urgent need to develop additional rules to avoid unintended outcomes, and to promote the ‘win-win’ options that we explain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Eddy covariance was used to measure the net CO2 exchange (NEE) over ecosystems differing in land use (forest and agriculture) in Thuringia, Germany. Measurements were carried out at a managed, even-aged European beech stand (Fagus sylvatica, 70–150 years old), an unmanaged, uneven-aged mixed beech stand in a late stage of development (F. sylvatica, Fraxinus excelsior, Acer pseudoplantanus, and other hardwood trees, 0–250 years old), a managed young Norway spruce stand (Picea abies, 50 years old), and an agricultural field growing winter wheat in 2001, and potato in 2002. Large contrasts were found in NEE rates between the land uses of the ecosystems. The managed and unmanaged beech sites had very similar net CO2 uptake rates (∼−480 to −500 g C m−2 yr−1). Main differences in seasonal NEE patterns between the beech sites were because of a later leaf emergence and higher maximum leaf area index at the unmanaged beech site, probably as a result of the species mix at the site. In contrast, the spruce stand had a higher CO2 uptake in spring but substantially lower net CO2 uptake in summer than the beech stands. This resulted in a near neutral annual NEE (−4 g C m−2 yr−1), mainly attributable to an ecosystem respiration rate almost twice as high as that of the beech stands, despite slightly lower temperatures, because of the higher elevation. Crops in the agricultural field had high CO2 uptake rates, but growing season length was short compared with the forest ecosystems. Therefore, the agricultural land had low-to-moderate annual net CO2 uptake (−34 to −193 g C m−2), but with annual harvest taken into account it will be a source of CO2 (+97 to +386 g C m−2). The annually changing patchwork of crops will have strong consequences on the regions' seasonal and annual carbon exchange. Thus, not only land use, but also land-use history and site-specific management decisions affect the large-scale carbon balance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Based on review and original data, this synthesis investigates carbon pools and fluxes of Siberian and European forests (600 and 300 million ha, respectively). We examine the productivity of ecosystems, expressed as positive rate when the amount of carbon in the ecosystem increases, while (following micrometeorological convention) downward fluxes from the atmosphere to the vegetation (NEE = Net Ecosystem Exchange) are expressed as negative numbers. Productivity parameters are Net Primary Productivity (NPP=whole plant growth), Net Ecosystem Productivity (NEP = CO2 assimilation minus ecosystem respiration), and Net Biome Productivity (NBP = NEP minus carbon losses through disturbances bypassing respiration, e.g. by fire and logging). Based on chronosequence studies and national forestry statistics we estimate a low average NPP for boreal forests in Siberia: 123 gC m–2 y–1. This contrasts with a similar calculation for Europe which suggests a much higher average NPP of 460 gC m–2 y–1 for the forests there. Despite a smaller area, European forests have a higher total NPP than Siberia (1.2–1.6 vs. 0.6–0.9 × 1015 gC region–1 y–1). This arises as a consequence of differences in growing season length, climate and nutrition. For a chronosequence of Pinus sylvestris stands studied in central Siberia during summer, NEE was most negative in a 67-y old stand regenerating after fire (– 192 mmol m–2 d–1) which is close to NEE in a cultivated forest of Germany (– 210 mmol m–2 d–1). Considerable net ecosystem CO2-uptake was also measured in Siberia in 200- and 215-y old stands (NEE:174 and – 63 mmol m–2 d–1) while NEP of 7- and 13-y old logging areas were close to the ecosystem compensation point. Two Siberian bogs and a bog in European Russia were also significant carbon sinks (– 102 to – 104 mmol m–2 d–1). Integrated over a growing season (June to September) we measured a total growing season NEE of – 14 mol m–2 summer–1 (– 168 gC m–2 summer–1) in a 200-y Siberian pine stand and – 5 mol m–2 summer–1 (– 60 gC m–2 summer–1) in Siberian and European Russian bogs. By contrast, over the same period, a spruce forest in European Russia was a carbon source to the atmosphere of (NEE: + 7 mol m–2 summer–1 = + 84 gC m–2 summer–1). Two years after a windthrow in European Russia, with all trees being uplifted and few successional species, lost 16 mol C m–2 to the atmosphere over a 3-month in summer, compared to the cumulative NEE over a growing season in a German forest of – 15.5 mol m–2 summer–1 (– 186 gC m–2 summer–1; European flux network annual averaged – 205 gC m–2 y–1). Differences in CO2-exchange rates coincided with differences in the Bowen ratio, with logging areas partitioning most incoming radiation into sensible heat whereas bogs partitioned most into evaporation (latent heat). Effects of these different surface energy exchanges on local climate (convective storms and fires) and comparisons with the Canadian BOREAS experiment are discussed. Following a classification of disturbances and their effects on ecosystem carbon balances, fire and logging are discussed as the main processes causing carbon losses that bypass heterotrophic respiration in Siberia. Following two approaches, NBP was estimated to be only about 13–16 mmol m–2 y–1 for Siberia. It may reach 67 mmol m–2 y–1 in North America, and about 140–400 mmol m–2 y–1 in Scandinavia. We conclude that fire speeds up the carbon cycle, but that it results also in long-term carbon sequestration by charcoal formation. For at least 14 years after logging, regrowth forests remain net sources of CO2 to the atmosphere. This has important implications regarding the effects of Siberian forest management on atmospheric concentrations. For many years after logging has taken place, regrowth forests remain weaker sinks for atmospheric CO2 than are nearby old-growth forests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Carbon dioxide, energy flux measurements and methane chamber measurements were carried out in an arctic wet tussock grassland located on a flood plane of the Kolyma river in NE Siberia over a summer period of 155 days in 2002 and early 2003. Respiration was also measured in April 2004. The study region is characterized by late thaw of the top soil (mid of June) and periodic spring floods. A stagnant water table below the grass canopy is fed by thawing of the active layer of permafrost and by flood water. The climate is continental with average daily temperature in the warmest months of 13°C (maximum temperature at midday: 28°C by the end of July), dry air (maximum vapour pressure deficit at midday: 28 hPa) and low rainfall of 50 mm during summer (July–September). Summer evaporation (July–September: 103 mm) exceeded rainfall by a factor of 2. The daily average Bowen ratio (H/LE) was 0.62 during the growing season. Net ecosystem CO2 uptake reached 10 μmol m−2 s−1 and was related to photon flux density (PFD) and vapour pressure deficit (VPD). The cumulative annual net carbon flux from the atmosphere to the terrestrial surface was estimated to be about −38 g C m−2 yr−1 (negative flux depicts net carbon sink). Winter respiration was extrapolated using the Lloyd and Taylor function. The net carbon balance is composed of a high rate of assimilation in a short summer and a fairly large but uncertain respiration mainly during autumn and spring. Methane flux (about 12 g C m−2 measured over 60 days) was 25% of C uptake during the same period of time (end of July to end of September). Assuming that CH4 was emitted only in summer, and taking the greenhouse gas warming potential of CH4 vs. CO2 into account (factor 23), the study site was a greenhouse gas source (at least 200 g Cequivalent m−2 yr−1). Comparing different studies in wetlands and tundra ecosystems as related to latitude, we expect that global warming would rather increase than decrease the CO2-C sink.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Science Ltd
    European journal of soil science 56 (2005), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Fires in boreal forests frequently convert organic matter in the organic layer to black carbon, but we know little of how changing fire frequency alters the amount, composition and distribution of black carbon and organic matter within soils, or affects podzolization. We compared black carbon and organic matter (organic carbon and nitrogen) in soils of three Siberian Scots pine forests with frequent, moderately frequent and infrequent fires.Black carbon did not significantly contribute to the storage of organic matter, most likely because it is consumed by intense fires. We found 99% of black carbon in the organic layer; maximum stocks were 72 g m−2. Less intense fires consumed only parts of the organic layer and converted some organic matter to black carbon (〉 5 g m−2), whereas more intense fires consumed almost the entire organic layer. In the upper 0.25 m of the mineral soil, black carbon stocks were 0.1 g m−2 in the infrequent fire regime.After fire, organic carbon and nitrogen in the organic layer accumulated with an estimated rate of 14.4 g C m−2 year−1 or 0.241 g N m−2 year−1. Maximum stocks 140 years after fire were 2190 g organic C m−2 and 40 g N m−2, with no differences among fire regimes. With increasing fire frequency, stocks of organic carbon increased from 600 to 1100 g m−2 (0–0.25 m). Stocks of nitrogen in the mineral soil were similar among the regimes (0.04 g m−2). We found that greater intensities of fire reduce amounts of organic matter in the organic layer but that the greater frequencies may slightly increase amounts in the mineral soil.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of pest science 34 (1961), S. 61-61 
    ISSN: 1612-4766
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Reviews of physiology, biochemistry and pharmacology 1 (1902), S. 32-62 
    ISSN: 1617-5786
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 8 (1972), S. 334-355 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Description / Table of Contents: Zusammenfassung Während der Zeit stärkster Wasseranspannung, am Ende der Trockenzeit, wurde der Einfluß der Klimafaktoren auf Nettophotosynthese, Dunkelatmung und Transpiration von Pflanzen in der Negev-Wüste untersucht. Versuchsobjekte waren Wildpflanzen (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), Kulturpflanzen der Sturzwasserfarm Avdat (Prunus armeniaca, Vitis vinifera) und künstlich bewässerte Arten (Citrullus colocynthis, Datura metel). 1. Lichtsättigung der Nettophotosynthese findet entsprechend der ungehinderten Enstrahlung am Wüstenstandort zwischen 60 und 90 klx statt. 2. Bei Bezug auf das Trockengewicht der Assimilationsorgane übertreffen die maximalen apparenten Photosyntheseraten der mesomorphen, bewässerten Fflanzen die der Wildpflanzen um das Zehnfache. Im Vergleich zu den übrigen Arten erreichen die Wildpflanzen bei Bezug auf die Oberfläche demgenüber höhere Werte. Bezogen auf den gesamten Chlorophyllgehalt liegen die maximalraten der Nettophotosynthese von Salsola und Noaea in der gleichen Größenordnung wie die von Datura, Citrullus und Wein. Selbst Hammada erreicht höhere Werte als die Aprikose. Daraus wird die hohe Photosynthesefähigkeit der Wildpflanzen am Ende der Trockenzeit deutlich. 3. In Anpassung an die Standortstemperaturen liegt der obere Temperaturkompensationspunkt der Nettophotosynthese bei den Wildpflanzen ungewöhnlich hoch. Mit Werten über 49°C erreicht und überschreitet er die bisher für Blütenpflanzen bekannten Maxima. Hammada weist bei 37°C noch optimale Leistungsfähigkeit auf, und bei einer Temperatur der Assimilationsorgane von 49°C ist die Photosyntheserate erst zu 50% gemindert. 4. Die Blattemperatur beeinflußt den Gaswechsel der Pflanzen auch durch Einwirkung auf den Spaltöffnungszustand. Temperatursenkung führt zu Verminderung, Temperaturerhöhung zu Steigerung des internen Diffusionswiderstandes der Blätter für Wasserdampf. Die Mittagsdepression von Nettophotosynthese und Transpiration der Wüstenpflanzen kann daher auf einer temperaturgesteuerten Spaltöffnungsreaktion beruhen. Es wird diskutiert, inwieweit auch die bei erhöhter Temperatur gleichzeitig vergrößerte Wasserdampfdruckdifferenz zwischen Blattmesophyll und Umgebungsluft auf dem Wege über die peristomatäre Transpiration Spaltöffnungsregelungen bedingen kann. 5. Erhöhung der Temperatur bis in die Nähe der Hitzeresistenzgrenze führt zur Verringerung des Diffusionswiderstandes gegen Wasserdampf, also zu einer Öffnungsreaktion der Stomata. Das verursacht verstärkte Transpirationskühlung. 6. Bei zunehmender Wasseranspannung in den Blättern kann der Diffusions-widerstand für Wasserdampf in Form einer Schwellenreaktion durch Spaltenschluß plötzlich steigen, oder es kommt zur einem kontinuierlichen Anstieg, der mit allmählicher Abnahme von Transpiration und Nettophotosynthese verbunden ist. 7. Bei vielen Pflanzen zeigt sich im Tageslauf eine Zunahme des Diffusions-widerstandes für Wasserdampf, der eine Abnahme der Transpirationsrate, aber keine Depression der Nettophotosynthese entspricht. Der Quotient zwischen CO2-Aufnahme und Wasserabgabe wird im Laufe des Tages also günstiger. Es wird erwogen, ob dieses für Wüstenpflanzen vorteilhafte Reaktionsvermögen auf einer Erhöhung des Mesophyllwiderstandes für den Transpirationsstrom beruhen kann.
    Notes: Summary The influence of climatic factors on net photosynthesis, dark respiration and transpiration was investigated in the Negev Desert at the end of the dry summer period when plant water stress was at a maximum. Species studied included: dominant species of the natural vegetation (Artemisia herba-alba, Hammada scoparia, Noaea mucronata, Reaumuria negevensis, Salsola inermis, Zygophyllum dumosum), cultivated plants receiving rainfall and run-off water during the winter season in the run-off farm Avdat (Prunus armeniaca, Vitis vinifera), and irrigated cultivated plants receiving additional water during the summer season (Citrullus colocynthis, Datura metel). 1. Light saturation of net photosynthesis was reached at 60–90 klx conforming to the high solar radiation intensities of the desert. 2. Maximum rates of CO2 uptake per unit of dry weight for the irrigated mesomorphic plants was ten times that of the wild plants. However, in comparison to the other species, maximal rates of CO2 uptake for wild plants were higher when calculated on a leaf area basis than when represented on a dry weight basis. Maximum rates of net photosynthesis per unit chlorophyll content for some of the wild plants (Salsola and Noaea) were comparable to those of the cultivated Vitis and irrigated Citrullus and Datura, Hammada exhibited even higher rates than Prunus. This demonstrates the great photosynthetic capacity of the wild plants even at the end of the dry season. 3. The upper temperature compensation point for net photosynthesis of the wild plants was unusually high as an adaptation to the temperatures of the habitat. Compensation points higher than 49°C exceed the maxima known so far for other flowering species. Maximum rates of net photosynthesis of Hammada were measured when the temperature of the photosynthetic organs was 37°C; at 49°C photosynthesis was only reduced by 50%. 4. Leaf temperature affects plant gas exchange by influencing stomatal aperture. Diffusion resistance of leaves to water vapour was reduced at low temperatures and increased at high temperatures. Reduction of net photosynthesis and transpiration of desert plants at midday may, therefore, be the result of temperature-induced stomatal closure. The possible influence of peristomatal transpiration on stomatal aperture is also discussed. Peristomatal transpiration is directly related to the vapour pressure gradient between the leaf mesophyll and the ambient air which increases with increasing temperatures. 5. Diffusion resistance to water vapour was reduced at high temperatures approaching the limits of heat resistance, due to increased stomatal aperture. This resulted in greater transpirational cooling. 6. Under conditions of increased leaf water stress, diffusion resistance increased, either by sudden stomatal closure at specific threshold values of water stress or through a continuous increase in resistance. This increased resistance is coupled with decreases in transpiration and photosynthesis. 7. In several plant species increased diffusion resistance during the course of the day caused decreased transpiration without a corresponding decrease in photosynthesis. Under these conditions, the ratio of CO2 uptake to transpiration became more favourable as the day progressed. The possibility that this favourable gas exchange response is the result of an increased mesophyll resistance to water vapour loss is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...