ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-29
    Description: Many high-resolution atmospheric models can reproduce the qualitative shape of the atmospheric kinetic energy spectrum, which has a power-law slope of −3 at large horizontal scales that shallows to approximately −5/3 in the mesoscale. This paper investigates the possible dependence of model energy spectra on the vertical grid resolution. Idealized simulations forced by relaxation to a baroclinically unstable jet are performed for a wide range of vertical grid spacings Δz. Energy spectra are converged for Δz 200 m but are very sensitive to resolution with 500 m ≤ Δz ≤ 2 km. The nature of this sensitivity depends on the vertical mixing scheme. With no vertical mixing or with weak, stability-dependent mixing, the mesoscale spectra are artificially amplified by low resolution: they are shallower and extend to larger scales than in the converged simulations. By contrast, vertical hyperviscosity with fixed grid-scale damping rate has the opposite effect: underresolved spectra are spuriously steepened. High-resolution spectra are converged except for the stability-dependent mixing case, which are damped by excessive mixing due to enhanced shear over a wide range of horizontal scales. It is shown that converged spectra require resolution of all vertical scales associated with the resolved horizontal structures: these include quasigeostrophic scales for large-scale motions with small Rossby number and the buoyancy scale for small-scale motions at large Rossby number. It is speculated that some model energy spectra may be contaminated by low vertical resolution, and it is recommended that vertical-resolution sensitivity tests always be performed.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-07-01
    Description: Aircraft observations in a cold-air outbreak to the north of the United Kingdom are used to examine the boundary layer and cloud properties in an overcast mixed-phase stratocumulus cloud layer and across the transition to more broken open-cellular convection. The stratocumulus cloud is primarily composed of liquid drops with small concentrations of ice particles and there is a switch to more glaciated conditions in the shallow cumulus clouds downwind. The rapid change in cloud morphology is accompanied by enhanced precipitation with secondary ice processes becoming active and greater thermodynamic gradients in the subcloud layer. The measurements also show a removal of boundary layer accumulation mode aerosols via precipitation processes across the transition that are similar to those observed in the subtropics in pockets of open cells. Simulations using a convection-permitting (1.5-km grid spacing) regional version of the Met Office Unified Model were able to reproduce many of the salient features of the cloud field although the liquid water path in the stratiform region was too low. Sensitivity studies showed that ice was too active at removing supercooled liquid water from the cloud layer and that improvements could be made by limiting the overlap between the liquid water and ice phases. Precipitation appears to be the key mechanism responsible for initiating the transition from closed- to open-cellular convection by decoupling the boundary layer and depleting liquid water from the stratiform cloud.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-07-01
    Description: In this paper, the sensitivity of idealized squall-line simulations to horizontal resolution, subgrid turbulence mixing scheme, and subfilter-scale motion is discussed. Inconsistent results from numerical simulations of convective systems have suggested that there are issues with the behavior of the subgrid turbulent mixing parameterizations with increasing resolution that still need to be understood. WRF is used to perform large-eddy simulation of an idealized squall line with horizontal grid spacings of 4 km, 2 km, 1 km, 500 m, and 250 m. While 4 km grid spacing is able to produce the general structure of the squall line, higher-resolution simulations produce more detailed structures. Individual convective cell size decreases, the maximum cloud top height increases, and the subgrid turbulence kinetic energy (TKE) ratio decreases as resolution increases. As found in past studies, 4 km grid spacing is not recommended as it contains an unreasonable amount of subgrid TKE, is not sufficient to resolve the large energy-containing eddies, and may even suppress propagation of the squall line. While horizontal resolution of 1 km can produce a squall line, there are several discrepancies between the 1 km case and higher resolutions, including trailing banded structures and inhibited three-dimensionalization. These issues at 1 km resolution are investigated by examining the subfilter energy transfer for the highest-resolution simulation filtered to a horizontal scale of 1 km. The subfilter energy transfer rate at a scale of 1 km is dominated by the streamwise and shear components. While dissipation dominates the transfer, a significant amount of backscatter also exists, which is not represented by most subgrid models.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-01
    Description: Subgrid-scale (SGS) parameterizations in atmosphere and ocean models are often defined independently in the horizontal and vertical directions because the grid spacing is not the same in these directions (anisotropic grids). In this paper, we introduce a new anisotropic SGS model in large-eddy simulations (LES) of stratified turbulence based on horizontal filtering of the equations of motion. Unlike the common horizontal SGS parameterizations in atmosphere and ocean models, the vertical derivatives of the horizontal SGS fluxes are included in our anisotropic SGS scheme, and therefore the horizontal and vertical SGS dissipation mechanisms are not disconnected in the newly developed model. Our model is tested with two vertical grid spacings and various horizontal resolutions, where the horizontal grid spacing is comparatively larger than that in the vertical. Our anisotropic LES model can successfully reproduce the results of direct numerical simulations, while the computational cost is significantly reduced in the LES. We suggest the new anisotropic SGS model as an alternative to current SGS parameterizations in atmosphere and ocean models, in which the schemes for horizontal and vertical scales are often decoupled. The new SGS scheme may improve the dissipative performance of atmosphere and ocean models without adding any backscatter or other energizing terms at small horizontal scales.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-17
    Description: Normal modes are used to investigate the contributions of geostrophic vortices and inertia–gravity waves to the energy spectrum of an idealized baroclinic wave simulation. The geostrophic and ageostrophic modal spectra (GE and AE, respectively) are compared to the rotational and divergent kinetic energy (RKE and DKE, respectively), which are often employed as proxies for vortex and wave energy. In our idealized f-plane framework, the horizontal modes are Fourier, and the vertical modes are found by solving an appropriate eigenvalue problem. For low vertical mode number n, both the GE and AE spectra are steep; however, for higher n, while both spectra are shallow, the AE is shallower than the GE and the spectra cross. The AE spectra are peaked at the Rossby deformation wavenumber knR, which increases with n. Analysis of the horizontal mode equations suggests that, for large wavenumbers k≫knR, the GE is approximated by the RKE, while the AE is approximated by the sum of the DKE and potential energy. These approximations are supported by the simulations. The vertically averaged RKE and DKE spectra are compared to the sum of the GE and AE spectra over all vertical modes; the spectral slopes of the GE and AE are close to those of the RKE and DKE, supporting the use of the Helmholtz decomposition to estimate vortices and waves in the midlatitudes. However, the AE is consistently larger than the DKE because of the contribution from the potential energy. Care must be taken when diagnosing the mesoscale transition from the intersection of the vortex and wave spectra; GE and AE will intersect at a different scale than RKE and DKE, despite their similar slopes.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1962-09-01
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-08-01
    Description: The role of environmental moisture in the deepening of cumulus convection is investigated by means of cloud-resolving numerical experiments. Under idealized conditions of uniform SST and specified radiative cooling, the evolution of trade wind cumulus into congestus clouds, and ultimately deep convection, is simulated and analyzed. The results exhibit a tight coupling between environmental moisture and cloud depth, both of which increase over the course of the simulations. Moistening in the lower troposphere is shown to result from the detrainment of water vapor from congestus clouds, and the strength of this tendency is quantified. Moistening of the lower troposphere reduces the dilution of cloud buoyancy by dry-air entrainment, and the relationship between this effect and increasing cloud depth is examined. The authors confirm that the mixing of water vapor by subgrid-scale turbulence has a significant impact on cloud depth, while the mixing of sensible heat has a negligible effect. By contrast, the dependence of cloud depth on CAPE appears to be of secondary importance. However, the deepening trend observed in these simulations is not solely determined by the evolving mean vapor profile. While enhancing the horizontally averaged humidity does result in deeper clouds, this occurs only after an adjustment period of several hours, presumably because of the buildup of CAPE. The implications of these findings for large-scale simulations in which resolved mixing is reduced—for example, by coarser spatial resolution or 2D experiments—are also discussed.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-04-01
    Description: The atmospheric mesoscale kinetic energy spectrum is investigated through numerical simulations of an idealized baroclinic wave life cycle, from linear instability to mature nonlinear evolution and with high horizontal and vertical resolution (Δx ≈ 10 km and Δz ≈ 60 m). The spontaneous excitation of inertia–gravity waves yields a shallowing of the mesoscale spectrum with respect to the large scales, in qualitative agreement with observations. However, this shallowing is restricted to the lower stratosphere and does not occur in the upper troposphere. At both levels, the mesoscale divergent kinetic energy spectrum—a proxy for the inertia–gravity wave energy spectrum—resembles a −5/3 power law in the mature stage. Divergent kinetic energy dominates the lower stratospheric mesoscale spectrum, accounting for its shallowing. Rotational kinetic energy, by contrast, dominates the upper tropospheric spectrum and no shallowing of the full spectrum is observed. By analyzing the tendency equation for the kinetic energy spectrum, it is shown that the lower stratospheric spectrum is not governed solely by a downscale energy cascade; rather, it is influenced by the vertical pressure flux divergence associated with vertically propagating inertia–gravity waves.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-01
    Description: The role of moist processes in the development of the mesoscale kinetic energy spectrum is investigated with numerical simulations of idealized moist baroclinic waves. Dry baroclinic waves yield upper-tropospheric kinetic energy spectra that resemble a −3 power law. Decomposition into horizontally rotational and divergent kinetic energy shows that the divergent energy has a much shallower spectrum, but its amplitude is too small to yield a characteristic kink in the total spectrum, which is dominated by the rotational part. The inclusion of moist processes energizes the mesoscale. In the upper troposphere, the effect is mainly in the divergent part of the kinetic energy; the spectral slope remains shallow (around −) as in the dry case, but the amplitude increases with increasing humidity. The divergence field in physical space is consistent with inertia–gravity waves being generated in regions of latent heating and propagating throughout the baroclinic wave. Buoyancy flux spectra are used to diagnose the scale at which moist forcing—via buoyant production from latent heating—injects kinetic energy. There is significant input of kinetic energy in the mesoscale, with a peak at scales of around 800 km and a plateau at smaller scales. If the latent heating is artificially set to zero at some time, the enhanced divergent kinetic energy decays over several days toward the level obtained in the dry simulation. The effect of moist forcing of mesoscale kinetic energy presents a challenge for theories of the mesoscale spectrum based on the idealization of a turbulent inertial subrange.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-04-01
    Description: Numerical simulations are used to investigate waves generated by flow over crater topography of diameter 100 km in an idealized atmosphere. The atmosphere is stratified with a constant buoyancy frequency profile and the background wind is constant. This study describes the development of a low-level jet along the upstream crater slope and its interaction with the cooler air within the crater valley. This interaction results in a hydraulic jump–like structure that acts as a modified topography, forcing a beam of secondary waves. The hydraulic jump is formed by a retreating gravity current as the cool air within the crater readjusts after the initial tilting of potential temperature contours. A two-dimensional simulation is used to compare features such as wave overturning in two and three dimensions. Several variations on the atmosphere’s profile are considered, including an atmosphere with reduced constant stratification and an atmosphere that is unstratified within the crater. These results indicate that the stratification within the crater is an important component in the development of the hydraulic jump. Also, several topographic modifications are included, such as a crater with no rims and a crater with reduced diameter. These comparisons reveal that the crater rims have little impact on the general wave pattern and that the crater curvature can influence wave breaking and lateral deflections. In addition, cases with rotation break the symmetry and induce more overturning in one-half of the crater.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...