ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society  (6)
  • COPERNICUS GESELLSCHAFT MBH  (2)
  • 1
    Publication Date: 2017-02-13
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-01
    Description: The uniqueness of optimal parameter sets of an Arctic sea ice simulation is investigated. A set of parameter optimization experiments is performed using an automatic parameter optimization system, which simultaneously optimizes 15 dynamic and thermodynamic process parameters. The system employs a stochastic approach (genetic algorithm) to find the global minimum of a cost function. The cost function is defined by the model–observation misfit and observational uncertainties of three sea ice properties (concentration, thickness, drift) covering the entire Arctic Ocean over more than two decades. A total of 11 independent optimizations are carried out to examine the uniqueness of the minimum of the cost function and the associated optimal parameter sets. All 11 optimizations asymptotically reduce the value of the cost functions toward an apparent global minimum and provide strikingly similar sea ice fields. The corresponding optimal parameters, however, exhibit a large spread, showing the existence of multiple optimal solutions. The result shows that the utilized sea ice observations, even though covering more than two decades, cannot constrain the process parameters toward a unique solution. A correlation analysis shows that the optimal parameters are interrelated and covariant. A principal component analysis reveals that the first three (six) principal components explain 70% (90%) of the total variance of the optimal parameter sets, indicating a contraction of the parameter space. Analysis of the associated ocean fields exhibits a large spread of these fields over the 11 optimized parameter sets, suggesting an importance of ocean properties to achieve a dynamically consistent view of the coupled sea ice–ocean system.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-10
    Description: Improvement and optimization of numerical sea ice models are of great relevance for understanding the role of sea ice in the climate system. They are also a prerequisite for meaningful prediction. To improve the simulated sea ice properties, we develop an objective parameter optimization system for a coupled sea ice–ocean model based on a genetic algorithm. To take the interrelation of dynamic and thermodynamic model parameters into account, the system is set up to optimize 15 model parameters simultaneously. The optimization is minimizing a cost function composed of the model–observation misfit of three sea ice quantities (concentration, drift, and thickness). The system is applied for a domain covering the entire Arctic and northern North Atlantic Ocean with an optimization window of about two decades (1990–2012). It successfully improves the simulated sea ice properties not only during the period of optimization but also in a validation period (2013–16). The similarity of the final values of the cost function and the resulting sea ice fields from a set of 11 independent optimizations suggest that the obtained sea ice fields are close to the best possible achievable by the current model setup, which allows us to identify limitations of the model formulation. The optimized parameters are applied for a simulation with a higher-resolution model to examine a portability of the parameters. The result shows good portability, while at the same time, it shows the importance of the oceanic conditions for the portability.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-12-01
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-03-24
    Description: We investigate how sea ice decline in summer and warmer ocean and surface temperatures in winter affect sea ice growth in the Arctic. Sea ice volume changes are estimated from satellite observations during winter from 2002 to 2019 and partitioned into thermodynamic growth and dynamic volume change. Both components are compared to validated sea ice-ocean models forced by reanalysis data to extend observations back to 1980 and to understand the mechanisms that cause the observed trends and variability. We find that a negative feedback driven by the increasing sea ice retreat in summer yields increasing thermodynamic ice growth during winter in the Arctic marginal seas eastward from the Laptev Sea to the Beaufort Sea. However, in the Barents and Kara Seas, this feedback seems to be overpowered by the impact of increasing oceanic heat flux and air temperatures, resulting in negative trends in thermodynamic ice growth of -2 km3month-1yr-1 on average over 2002-2019 derived from satellite observations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-06
    Description: Any use of observational data for data assimilation requires adequate information of their representativeness in space and time. This is particularly important for sparse, non-synoptic data, which comprise the bulk of oceanic in situ observations in the Arctic. To quantify spatial and temporal scales of temperature and salinity variations, we estimate the autocorrelation function and associated decorrelation scales for the Amerasian Basin of the Arctic Ocean. For this purpose, we compile historical measurements from 1980 to 2015. Assuming spatial and temporal homogeneity of the decorrelation scale in the basin interior (abyssal plain area), we calculate autocorrelations as a function of spatial distance and temporal lag. The examination of the functional form of autocorrelation in each depth range reveals that the autocorrelation is well described by a Gaussian function in space and time. We derive decorrelation scales of 150–200 km in space and 100–300 days in time. These scales are directly applicable to quantify the representation error, which is essential for use of ocean in situ measurements in data assimilation. We also describe how the estimated autocorrelation function and decorrelation scale should be applied for cost function calculation in a data assimilation system.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Ocean Science, COPERNICUS GESELLSCHAFT MBH, 9(4), pp. 609-630, ISSN: 1812-0784
    Publication Date: 2019-07-16
    Description: Two types of optimization methods were applied to a parameter optimization problem in a coupled ocean--sea ice model of the Arctic, and applicability and efficiency of the respective methods were examined. One optimization utilizes a finite difference (FD) method based on a traditional gradient descent approach, while the other adopts a micro-genetic algorithm (\unit{\mu}GA) as an example of a stochastic approach. The opt\imizations were performed by minimizing a cost function composed of model--data misfit of ice concentration, ice drift velocity and ice thickness. A series of optimizations were conducted that differ in the model formulation (``smoothed code'' versus standard code) with respect to the FD method and in the population size and number of possibilities with respect to the \unit{\mu}GA method. The FD method fails to estimate optimal parameters due to the ill-shaped nature of the cost function caused by the strong non-linearity of the system, whereas the genetic algorithms can effectively estimate near optimal parameters. The results of the study indicate that the sophisticated stochastic approach (\unit{\mu}GA) is of practical use for parameter optimization of a coupled ocean--sea ice model with a medium-sized horizontal resolution of 50\,km\,$\times$\,50\,km as used in this study.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 30, pp. 4337-4350, ISSN: 0894-8755
    Publication Date: 2017-12-15
    Description: Warm water of open ocean origin on the continental shelf of the Amundsen and Bellingshausen Seas causes the highest basal melt rates reported for Antarctic ice shelves with severe consequences for the ice shelf/ice sheet dynamics. Ice shelves fringing the broad continental shelf in the Weddell and Ross Seas melt at rates orders ofmagnitude smaller. However, simulations using coupled ice–ocean models forced with the atmospheric output of the HadCM3 SRES-A1B scenario run (CO2 concentration in the atmosphere reaches 700 ppmv by the year 2100 and stays at that level for an additional 100 years) show that the circulation in the southern Weddell Sea changes during the twenty-first century. Derivatives of Circumpolar Deep Water are directed southward underneath the Filchner–Ronne Ice Shelf, warming the cavity and dramatically increasing basal melting. To find out whether the open ocean will always continue to power the melting, the authors extend their simulations, applying twentieth-century atmospheric forcing, both alone and together with prescribed basal mass flux at the end of (or during) the SRES-A1B scenario run. The results identify a tipping point in the southern Weddell Sea: once warm water flushes the ice shelf cavity a positive meltwater feedback enhances the shelf circulation and the onshore transport of open ocean heat. The process is irreversible with a recurrence to twentieth-century atmospheric forcing and can only be halted through prescribing a return to twentieth-century basal melt rates. This finding might have strong implications for the stability of the Antarctic ice sheet.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...