ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2006-10-01
    Description: A large-domain explicit convection simulation is used to investigate the life cycle of nocturnal convection for a one-week period of successive zonally propagating heavy precipitation episodes occurring over the central United States. Similar to climatological studies of phase-coherent warm-season convection, the longest-lived precipitation episodes initiate during the late afternoon over the western Great Plains (105°–100°W), reach their greatest intensity at night over the central Great Plains (100°–95°W), and typically weaken around or slightly after sunrise over the Midwest (95°–85°W). The longest-lived episodes exhibit average zonal phase speeds of ∼20 m s−1, consistent with radar observations during the period. Composite analysis of the life cycle of five long-lived nocturnal precipitation episodes indicates that convection both develops and then propagates eastward along an east–west-oriented lower-tropospheric frontal zone. An elevated ∼2-km-deep layer of high-θe air helps sustain convection during its period of greatest organization overnight. Trajectory analysis for individual episodes reveals that the high-θe air originates both from within the frontal zone and to its south where, in this latter case, it is transported northward by the nocturnal low-level jet (LLJ). The mature (nocturnal) stage composite evinces a thermally direct cross-frontal circulation, within which the trajectories ascend 0.5–2 km to produce the elevated conditionally unstable layer. This transverse vertical circulation is forced by deformation frontogenesis, which itself is supported by the intensification of the nocturnal LLJ. The frontal zone also provides an environment of strong vertical shear, which helps organize the zonally propagating component of convection. Overnight the convection exhibits squall-line characteristics, where its phase speed is typically consistent with that which arises from deep convectively induced buoyancy perturbations combined with the opposing environmental surface flow. In a large majority of cases convection weakens as it reaches the Midwest around sunrise, where environmental thermodynamic stability is greater, and environmental vertical shear, frontogenesis, and vertical motions are weaker than those located farther west overnight.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-08-01
    Description: This study examines the formation of Hurricane Gabrielle (2001), focusing on whether an initial disturbance and vertical wind shear were favorable for development. This examination is performed by running numerical experiments using the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5). Gabrielle is chosen as an interesting case to study since it formed in the subtropics only a few days before making landfall in Florida. Three simulations are run: a control run and two sensitivity experiments. The control run is compared with observations to establish the closeness of the model output to Gabrielle’s observed formation. The two sensitivity experiments are designed to test the response of the developing tropical cyclone to alterations in the initial conditions. The first sensitivity experiment removes the initial (or precursor) disturbance, a midtropospheric vortex located over Florida. The second sensitivity experiment reduces the vertical wind shear over the area of formation. The control run produces a system comparable to Gabrielle. The convection in the control run is consistently located downshear of the center of circulation. In the first sensitivity experiment, with the removal of the initial disturbance, no organized system develops. This indicates the importance of the midtropospheric vortex in Gabrielle’s formation. The second sensitivity experiment, which reduces the vertical wind shear over the area of Gabrielle’s formation, produces a system that can be identified as Gabrielle. This system, however, is weaker than both the control run and the observations of Gabrielle. This study provides direct evidence of a favorable influence of modest vertical wind shear on the formation of a tropical cyclone in this case.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-07-01
    Description: A coupled land surface–atmospheric model that permits grid-resolved deep convection is used to examine linkages between land surface conditions, the planetary boundary layer (PBL), and precipitation during a 12-day warm-season period over the central United States. The period of study (9–21 June 2002) coincided with an extensive dry soil moisture anomaly over the western United States and adjacent high plains and wetter-than-normal soil conditions over parts of the Midwest. A range of possible atmospheric responses to soil wetness is diagnosed from a set of simulations that use land surface models (LSMs) of varying sophistication and initial land surface conditions of varying resolution and specificity to the period of study. Results suggest that the choice of LSM [Noah or the less sophisticated simple slab soil model (SLAB)] significantly influences the diurnal cycle of near-surface potential temperature and water vapor mixing ratio. The initial soil wetness also has a major impact on these thermodynamic variables, particularly during and immediately following the most intense phase of daytime surface heating. The soil wetness influences the daytime PBL evolution through both local and upstream surface evaporation and sensible heat fluxes, and through differences in the mesoscale vertical circulation that develops in response to horizontal gradients of the latter. Resulting differences in late afternoon PBL moist static energy and stability near the PBL top are associated with differences in subsequent late afternoon and evening precipitation in locations where the initial soil wetness differs among simulations. In contrast to the initial soil wetness, soil moisture evolution has negligible effects on the mean regional-scale thermodynamic conditions and precipitation during the 12-day period.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-01
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...