ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (2)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 30 (1987), S. 232-238 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The interaction of an intense relativistic electron beam (REB) with preformed channels in gaseous atmospheres has been analyzed in order to delineate the effects of reduced density, avalanche ionization, preexisting conductivity, and channel currents. The REB for these experiments was produced from a field emission diode driven by the (approximate)1.4 MV pulse from a pulse forming line. Relativistic electron beam currents up to (approximate)16 kA with current densities up to (approximate)2 kA/cm2 were achieved and the REB current was approximately a half sine wave of width 27 nsec (FWHM). Preformed channels in the atmosphere were created using laser-guided electric discharges. Current-carrying reduced density channels were produced by applying a second discharge to the reduced density channel produced by the first discharge. Reduced density (≤ρ0/80), nonconducting channels were produced by the absorption of radiation from a pulsed CO2 laser in ammonia gas at background pressures of (approximate)40 Torr (ρ0/20). The results show that reduced density had little effect on REB propagation except for a decrease in scattering until the density within the channel had been reduced to such a low level that the dominant mechanism by which conductivity is generated shifted from direct collisional ionization to avalanche ionization. Avalanche ionization in a uniform atmosphere increases the growth of REB instabilities but when it is limited to the reduced density channel region the REB was always repelled or expelled from the channel. Preexisting channel conductivity (σ≥0.1 S/m) also caused the REB to be repelled or expelled from the channel. The presence of a parallel channel current permitted the REB to be readily injected into the channel and guided along it with minimal losses. All of these effects and the thresholds at which they occurred are consistent with the present understanding of the interaction of intense REB's with gaseous atmospheres.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 28 (1985), S. 2357-2364 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Results from a series of experiments are described which show that hot, reduced-density channels in the atmosphere usually cool by a process of turbulent convective mixing. Five different types of channels were created: (a) by the interaction of a pulsed CO2 laser with aerosols in the atmosphere, (b) by electric discharges in the atmosphere, (c) by laser-guided electric discharges in the atmosphere, and (d) and (e) by the absorption of CO2 laser radiation in nitrogen doped with sulfur hexafluoride. For channels in which the energy deposition was almost cylindrically symmetric and axially uniform, (e), the rate of cooling, after reaching pressure equilibrium, was within an order of magnitude of thermal conduction. But for channels in which the energy deposition was asymmetric and/or axially nonuniform, the rate of cooling was typically one thousand times faster than thermal conduction (for channels whose radius at pressure equilibrium was ∼1 cm). These channels were seen to be turbulent and to cool by mixing cold surrounding air into the hot channel. Such turbulence has been explained by Picone and Boris [Phys. Fluids 26, 365 (1983)] in terms of a residual vorticity that is caused by the noncylindrical energy deposition. A simple empirical formula is deduced relating the rate of cooling (growth of channel envelope) to the radius of the channel at pressure equilibrium and to the ambient sound speed, which indicates that the effect of vorticity/turbulence saturates for variations in the energy deposition of greater than about 2 to 1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...