ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 2768-2773 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Ti and N were implanted into soda lime glass to doses up to 4.5×1017 cm−2 to reduce solar load and infrared transmission. Analysis of the Ti+N implant distributions by Rutherford backscattering spectrometry and x-ray photoelectron spectroscopy (XPS) revealed profiles which closely followed each other as designed by the selection of implant energies. XPS, x-ray diffraction, and selected area electron diffraction in transmission electron microscopy also confirmed the existence of a crystalline B1-type, cubic TiN layer, 140 nm wide, at doses greater than 9×1016 cm−2. Optical measurements showed that the fraction of infrared radiation reflected was increased by almost a factor of 4 compared to an increase of 1.8 in the visible region. The percentage of the total solar energy rejected reached 80% at the highest dose, indicating that the buried TiN layer is highly effective in reducing solar energy transmission. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...