ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q02003, doi:10.1029/2003GC000626.
    Description: The summit crater of Vailulu'u Seamount, the youngest volcano in the Samoan chain, hosts an active hydrothermal system with profound impact on the ocean water column inside and around its crater (2 km wide and 407 m deep at a 593 m summit depth). The turbidity of the ocean water reaches 1.4 NTU, values that are higher than in any other submarine hydrothermal system. The water is enriched in hydrothermal Mn (3.8 ppb) and 3He (1 × 10−11 cc/g) and we measured water temperature anomalies near the crater floor up to 0.2°C. The hydrothermal system shows complex interactions with the ocean currents around Vailulu'u that include tidally-modulated vertical motions of about 40–50 m, and replenishment of waters into the crater through breaches in the upper half of the crater wall. Inside and outside potential density gradients suggest that hydrothermal venting exports substantial amounts of water from the crater (1.3 ± 0.2 × 108 m3/day), which is in good agreement with fluxes obtained from a tracer release experiment inside the crater of Vailulu'u (0.8 × 108 m3/day [Hart et al., 2003]). This mass flux, in combination with the differences in the inside and outside crater temperature, yields a power output of around 760 megawatts, the equivalent of 20–100 MOR black smokers. The Mn output of 300 kg/day is approximately ten times the output of a single black smoker.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1955986 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q0AF07, doi:10.1029/2012GC004211.
    Description: The output of gas and tephra from volcanoes is an inherently disorganized process that makes reliable flux estimates challenging to obtain. Continuous monitoring of gas flux has been achieved in only a few instances at subaerial volcanoes, but never for submarine volcanoes. Here we use the first sustained (yearlong) hydroacoustic monitoring of an erupting submarine volcano (NW Rota-1, Mariana arc) to make calculations of explosive gas flux from a volcano into the ocean. Bursts of Strombolian explosive degassing at the volcano summit (520 m deep) occurred at 1–2 min intervals during the entire 12-month hydrophone record and commonly exhibited cyclic step-function changes between high and low intensity. Total gas flux calculated from the hydroacoustic record is 5.4 ± 0.6 Tg a−1, where the magmatic gases driving eruptions at NW Rota-1 are primarily H2O, SO2, and CO2. Instantaneous fluxes varied by a factor of ∼100 over the deployment. Using melt inclusion information to estimate the concentration of CO2 in the explosive gases as 6.9 ± 0.7 wt %, we calculate an annual CO2 eruption flux of 0.4 ± 0.1 Tg a−1. This result is within the range of measured CO2 fluxes at continuously erupting subaerial volcanoes, and represents ∼0.2–0.6% of the annual estimated output of CO2from all subaerial arc volcanoes, and ∼0.4–0.6% of the mid-ocean ridge flux. The multiyear eruptive history of NW Rota-1 demonstrates that submarine volcanoes can be significant and sustained sources of CO2 to the shallow ocean.
    Description: The National Oceanic and Atmospheric Administration Office of Ocean Exploration and Research, the NOAA Vents Program, and the National Science Foundation (OCE-0751776) for support.
    Description: 2013-05-29
    Keywords: Gas flux ; Ocean acoustics ; Seafloor volcanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 33 (2006): L10608, doi:10.1029/2006GL026048.
    Description: About 90% of Earth's volcanism occurs along the global mid-ocean ridge system. Here, sporadic volcanic and tectonic activity is thought to cause cataclysmic release of hydrothermal fluids, forming event plumes. Each plume often contains as much hydrothermal effluent and heat as chronic hydrothermal venting from a typical vent site discharges during a year. To date, only a few event plumes have been detected, and only above intermediate-rate spreading ridges in the Pacific. Here, we report the first evidence for an unusually large event plume that originated from the slow-spreading (3 cm/yr full-rate) Carlsberg Ridge in the NW Indian Ocean. At 70 km long, up to 4540 km3 in volume and with up to 24 × 1016 J of excess heat, this event plume was substantially larger than previous ones and demonstrates that dispersion of hydrothermal heat and biological products from slow spreading ridges may be more significant and effective than hitherto imagined.
    Description: This work was supported by the Natural Environment Research Council, UK; the National Oceanography Centre, Southampton (NOCS); the NOAA Vents Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q08002, doi:10.1029/2004GC000712.
    Description: Detailed hydrothermal surveys over ridges with spreading rates of 50–150 mm/yr have found a linear relation between spreading rate and the spatial frequency of hydrothermal venting, but the validity of this relation at slow and ultraslow ridges is unproved. Here we compare hydrothermal plume surveys along three sections of the Gakkel Ridge (Arctic Ocean) and the Southwest Indian Ridge (SWIR) to determine if hydrothermal activity is similarly distributed among these ultraslow ridge sections and if these distributions follow the hypothesized linear trend derived from surveys along fast ridges. Along the Gakkel Ridge, most apparent vent sites occur on volcanic highs, and the extraordinarily weak vertical density gradient of the deep Arctic permits plumes to rise above the axial bathymetry. Individual plumes can thus be extensively dispersed along axis, to distances 〉200 km, and ∼75% of the total axial length surveyed is overlain by plumes. Detailed mapping of these plumes points to only 9–10 active sites in 850 km, however, yielding a site frequency F s , sites/100 km of ridge length, of 1.1–1.2. Plumes detected along the SWIR are considerably less extensive for two reasons: an apparent paucity of active vent fields on volcanic highs and a normal deep-ocean density gradient that prevents extended plume rise. Along a western SWIR section (10°–23°E) we identify 3–8 sites, so F s = 0.3–0.8; along a previously surveyed 440 km section of the eastern SWIR (58°–66°E), 6 sites yield F s = 1.3. Plotting spreading rate (us) versus F s, the ultraslow ridges and eight other ridge sections, spanning the global range of spreading rate, establish a robust linear trend (F s = 0.98 + 0.015us), implying that the long-term heat supply is the first-order control on the global distribution of hydrothermal activity. Normalizing F s to the delivery rate of basaltic magma suggests that ultraslow ridges are several times more efficient than faster-spreading ridges in supporting active vent fields. This increased efficiency could derive from some combination of three-dimensional magma focusing at volcanic centers, deep mining of heat from gabbroic intrusions and direct cooling of the upper mantle, and nonmagmatic heat supplied by exothermic serpentinization.
    Description: This research was partially supported the NOAA VENTS Program. P.J.M. and H.J.B.D. gratefully acknowledge NSF grant OPP 9911795 for support of the AMORE Expedition; P.J.M. and E.T.B. acknowledge NSF grant OPP 0107767 and the VENTS Program for development and construction of MAPRs for use in ice-covered seas. H.J.B.D. acknowledges NSF grant OCE-9907630 for support of SWIR studies. J.E.S. was supported by Deutsche Forschungsgemeinschaft grant SN15/2.
    Keywords: Gakkel Ridge ; Hydrothermal venting ; Magmatic budget ; Southwest Indian Ridge ; Ultraslow ridges
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 4239927 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 22(4), (2021): e2020GC009481, https://doi.org/10.1029/2020GC009481.
    Description: The impact of submarine hydrothermal systems on organic carbon in the ocean—one of the largest fixed carbon reservoirs on Earth—could be profound. Yet, different vent sites show diverse fluid chemical compositions and the subsequent biological responses. Observations from various vent sites are to evaluate hydrothermal systems' impact on the ocean carbon cycle. A response cruise in May 2009 to an on-going submarine eruption at West Mata Volcano, northeast Lau Basin, provided an opportunity to quantify the organic matter production in a back-arc spreading hydrothermal system. Hydrothermal vent fluids contained elevated dissolved organic carbon, particulate organic carbon (POC), and particulate nitrogen (PN) relative to background seawater. The δ13C-POC values for suspended particles in the diffuse vent fluids (−15.5‰ and −12.3‰) are distinct from those in background seawater (−23 ± 1‰), indicative of unique carbon synthesis pathways of the vent microbes from the seawater counterparts. The first dissolved organic nitrogen concentrations reported for diffuse vents were similar to or higher than those for background seawater. Enhanced nitrogen fixation and denitrification removed 37%–89% of the total dissolved nitrogen in the recharging background seawater in the hydrothermal vent flow paths. The hydrothermal plume samples were enriched in POC and PN, indicating enhanced biological production. The total “dark” organic carbon production within the plume matches the thermodynamic prediction based on available reducing chemical substances supplied to the plume. This research combines the measured organic carbon contents with thermodynamic modeled results and demonstrates the importance of hydrothermal activities on the water column carbon production in the deep ocean.
    Description: This project was supported by N.S.F. (OCE0929881, J. P. Cowen and K. H. Rubin), the NOAA PMEL VENTS (now Earth-Ocean Interactions) Program and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement No. NA10OAR4320148, and the UH NASA Astrobiology Institute. The Ministry of Science and Technology of Taiwan award (MOST 107-2611-M-002-002, and MOST 108-2611-M-002-006 to H.-T. Lin). Ministry of Education (M.O.E.) Republic of China (Taiwan) 109L892601 to H.-T. Lin. SOEST contributions no. 11285, C-DEBI contribution no. 563. PMEL contribution no. 3996, JISAO contribution 2183.
    Keywords: Dissolved organic carbon (DOC) ; Dissolved organic nitrogen (DON) ; Hydrothermal vent fluids and plumes ; Particulate nitrogen (PN) ; Particulate organic carbon isotopes (δ13C-POC) ; Thermodynamic prediction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 18 (1980), S. 287-298 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Spectral analysis of water color and concurrent measurements of the relative concentration of various particulate and dissolved constituents within a broad range of water types are necessary to quantify ocean color observations and successfully relate them to various biological and physical processes that can be monitored by remote sensing. Some of the results of a Nimbus-G prelaunch cruise in connection with the Coastal Zone Color Scanner (CZCS) experiment, which was carried out in the Gulf of Mexico in October 1977, are presented and discussed. Based upon a small but diverse sample of near-surface measurements, it appears possible to estimate total suspended particulate matter (SPM) to useful accuracies by forming ratios of the spectral radiances measured at wavelengths falling near the centers of certain CZCS bands, viz., 440 nm: 550 nm and 440 nm : 520 nm. Furthermore, the analysis suggests a very high degree of covariation between SPM and phytoplankton pigments except for certain well-defined special cases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-05-20
    Description: Hydrothermal discharge from submarine arc volcanoes is thought to be an important contributor to global hydrothermal budgets, but quantitative flux measurements are scarce. Ahyi Seamount, a shallow (〈100 m) submarine intraoceanic arc volcano located in the Commonwealth of the Northern Mariana Islands, erupted in May 2014. In May and December 2014, we sampled the hydrothermal plume created by the eruption and estimated chemical fluxes from Ahyi by combining shipboard hull-mounted Acoustic Doppler Current Profile current vector measurements with continuous and discrete Conductivity, Temperature, and Depth (CTD) data. Towed CTD sections were conducted perpendicular to the mean current direction: a sampling strategy that optimized chemical flux calculations by reducing complexities introduced by temporal variability in the speed and direction of plume dispersion. The Ahyi plume had an elevated optical backscatter signal accompanied by evidence of reduced chemical species and a lowered pH. We found enriched concentrations of H2, 3He, CH4, particulate S, Mn, and Fe, observations consistent with a highly active hydrothermal system. The fluxes of magmatic 3He and Fe from Ahyi were similar to that measured at three slow-spreading ridge-crest sites, whereas CH4 and Mn were 100–1,000 times lower. This is the first study to constrain export fluxes of a shallow submarine arc volcano into the euphotic zone. However, our data were collected soon after an eruption and thus may not be fully representative of the longer-term chemical inputs from Ahyi. © 2018. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1980-05-01
    Print ISSN: 0006-8314
    Electronic ISSN: 1573-1472
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...