ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-08-08
    Description: Maize genetic diversity has been used to understand the molecular basis of phenotypic variation and to improve agricultural efficiency and sustainability. We crossed 25 diverse inbred maize lines to the B73 reference line, capturing a total of 136,000 recombination events. Variation for recombination frequencies was observed among families, influenced by local (cis) genetic variation. We identified evidence for numerous minor single-locus effects but little two-locus linkage disequilibrium or segregation distortion, which indicated a limited role for genes with large effects and epistatic interactions on fitness. We observed excess residual heterozygosity in pericentromeric regions, which suggested that selection in inbred lines has been less efficient in these regions because of reduced recombination frequency. This implies that pericentromeric regions may contribute disproportionally to heterosis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McMullen, Michael D -- Kresovich, Stephen -- Villeda, Hector Sanchez -- Bradbury, Peter -- Li, Huihui -- Sun, Qi -- Flint-Garcia, Sherry -- Thornsberry, Jeffry -- Acharya, Charlotte -- Bottoms, Christopher -- Brown, Patrick -- Browne, Chris -- Eller, Magen -- Guill, Kate -- Harjes, Carlos -- Kroon, Dallas -- Lepak, Nick -- Mitchell, Sharon E -- Peterson, Brooke -- Pressoir, Gael -- Romero, Susan -- Oropeza Rosas, Marco -- Salvo, Stella -- Yates, Heather -- Hanson, Mark -- Jones, Elizabeth -- Smith, Stephen -- Glaubitz, Jeffrey C -- Goodman, Major -- Ware, Doreen -- Holland, James B -- Buckler, Edward S -- New York, N.Y. -- Science. 2009 Aug 7;325(5941):737-40. doi: 10.1126/science.1174320.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉United States Department of Agriculture-Agriculture Research Service (USDA-ARS), USA. mcmullenm@missouri.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661427" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Centromere/genetics ; *Chromosome Mapping ; Chromosomes, Plant/*genetics ; Crosses, Genetic ; Epistasis, Genetic ; Flowers/genetics/growth & development ; *Genetic Variation ; Genome, Plant ; Heterozygote ; Hybrid Vigor ; Inbreeding ; Linkage Disequilibrium ; Phenotype ; Polymorphism, Single Nucleotide ; Quantitative Trait Loci ; *Quantitative Trait, Heritable ; Recombination, Genetic ; Selection, Genetic ; Zea mays/classification/*genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-08-08
    Description: Flowering time is a complex trait that controls adaptation of plants to their local environment in the outcrossing species Zea mays (maize). We dissected variation for flowering time with a set of 5000 recombinant inbred lines (maize Nested Association Mapping population, NAM). Nearly a million plants were assayed in eight environments but showed no evidence for any single large-effect quantitative trait loci (QTLs). Instead, we identified evidence for numerous small-effect QTLs shared among families; however, allelic effects differ across founder lines. We identified no individual QTLs at which allelic effects are determined by geographic origin or large effects for epistasis or environmental interactions. Thus, a simple additive model accurately predicts flowering time for maize, in contrast to the genetic architecture observed in the selfing plant species rice and Arabidopsis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buckler, Edward S -- Holland, James B -- Bradbury, Peter J -- Acharya, Charlotte B -- Brown, Patrick J -- Browne, Chris -- Ersoz, Elhan -- Flint-Garcia, Sherry -- Garcia, Arturo -- Glaubitz, Jeffrey C -- Goodman, Major M -- Harjes, Carlos -- Guill, Kate -- Kroon, Dallas E -- Larsson, Sara -- Lepak, Nicholas K -- Li, Huihui -- Mitchell, Sharon E -- Pressoir, Gael -- Peiffer, Jason A -- Rosas, Marco Oropeza -- Rocheford, Torbert R -- Romay, M Cinta -- Romero, Susan -- Salvo, Stella -- Sanchez Villeda, Hector -- da Silva, H Sofia -- Sun, Qi -- Tian, Feng -- Upadyayula, Narasimham -- Ware, Doreen -- Yates, Heather -- Yu, Jianming -- Zhang, Zhiwu -- Kresovich, Stephen -- McMullen, Michael D -- New York, N.Y. -- Science. 2009 Aug 7;325(5941):714-8. doi: 10.1126/science.1174276.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Agriculture (USDA)-Agricultural Research Service (USDA-ARS), USA. esb33@cornell.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19661422" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Chromosome Mapping ; Chromosomes, Plant/genetics ; Epistasis, Genetic ; Flowers/*genetics/growth & development ; Gene Frequency ; Genes, Plant ; Genetic Variation ; Geography ; Inbreeding ; Phenotype ; Polymorphism, Single Nucleotide ; *Quantitative Trait Loci ; Quantitative Trait, Heritable ; Recombination, Genetic ; Time Factors ; Zea mays/*genetics/growth & development/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-05
    Description: Improving environmental adaptation in crops is essential for food security under global change, but phenotyping adaptive traits remains a major bottleneck. If associations between single-nucleotide polymorphism (SNP) alleles and environment of origin in crop landraces reflect adaptation, then these could be used to predict phenotypic variation for adaptive traits. We tested this proposition in the global food crop Sorghum bicolor , characterizing 1943 georeferenced landraces at 404,627 SNPs and quantifying allelic associations with bioclimatic and soil gradients. Environment explained a substantial portion of SNP variation, independent of geographical distance, and genic SNPs were enriched for environmental associations. Further, environment-associated SNPs predicted genotype-by-environment interactions under experimental drought stress and aluminum toxicity. Our results suggest that genomic signatures of environmental adaptation may be useful for crop improvement, enhancing germplasm identification and marker-assisted selection. Together, genome-environment associations and phenotypic analyses may reveal the basis of environmental adaptation.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...