ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-06-28
    Description: Mammals are coinfected by multiple pathogens that interact through unknown mechanisms. We found that helminth infection, characterized by the induction of the cytokine interleukin-4 (IL-4) and the activation of the transcription factor Stat6, reactivated murine gamma-herpesvirus infection in vivo. IL-4 promoted viral replication and blocked the antiviral effects of interferon-gamma (IFNgamma) by inducing Stat6 binding to the promoter for an important viral transcriptional transactivator. IL-4 also reactivated human Kaposi's sarcoma-associated herpesvirus from latency in cultured cells. Exogenous IL-4 plus blockade of IFNgamma reactivated latent murine gamma-herpesvirus infection in vivo, suggesting a "two-signal" model for viral reactivation. Thus, chronic herpesvirus infection, a component of the mammalian virome, is regulated by the counterpoised actions of multiple cytokines on viral promoters that have evolved to sense host immune status.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531374/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531374/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reese, T A -- Wakeman, B S -- Choi, H S -- Hufford, M M -- Huang, S C -- Zhang, X -- Buck, M D -- Jezewski, A -- Kambal, A -- Liu, C Y -- Goel, G -- Murray, P J -- Xavier, R J -- Kaplan, M H -- Renne, R -- Speck, S H -- Artyomov, M N -- Pearce, E J -- Virgin, H W -- AI032573/AI/NIAID NIH HHS/ -- AI084887/AI/NIAID NIH HHS/ -- CA119917/CA/NCI NIH HHS/ -- CA164062/CA/NCI NIH HHS/ -- CA52004/CA/NCI NIH HHS/ -- P30 CA021765/CA/NCI NIH HHS/ -- R01 AI032573/AI/NIAID NIH HHS/ -- R01 AI084887/AI/NIAID NIH HHS/ -- R01 AI095282/AI/NIAID NIH HHS/ -- R01 CA052004/CA/NCI NIH HHS/ -- R01 CA119917/CA/NCI NIH HHS/ -- R01 CA164062/CA/NCI NIH HHS/ -- U54 AI057160/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):573-7. doi: 10.1126/science.1254517. Epub 2014 Jun 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. ; Emory University Vaccine Center, Atlanta, GA 30322, USA. ; Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA. ; Departments of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. ; Center for Computational and Integrative Biology and Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA. ; Departments of Infectious Diseases and Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA. ; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA. virgin@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24968940" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Gammaherpesvirinae/genetics/*physiology ; Gene Expression Regulation, Viral ; Herpesvirus 8, Human/genetics/*physiology ; Humans ; Interferon-gamma/*immunology/pharmacology ; Interleukin-4/*metabolism/pharmacology ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Nematospiroides dubius/immunology ; Ovum/immunology ; Promoter Regions, Genetic ; STAT6 Transcription Factor/*metabolism ; Schistosoma mansoni/*immunology ; Schistosomiasis mansoni/*immunology ; Strongylida Infections/immunology ; Virus Activation/drug effects/genetics/*physiology ; Virus Latency/physiology ; Virus Replication/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-07-13
    Description: Understanding magnetic phases in quantum mechanical systems is one of the essential goals in condensed matter physics, and the advent of prototype quantum simulation hardware has provided new tools for experimentally probing such systems. We report on the experimental realization of a quantum simulation of interacting Ising spins on three-dimensional cubic lattices up to dimensions 8 x 8 x 8 on a D-Wave processor (D-Wave Systems, Burnaby, Canada). The ability to control and read out the state of individual spins provides direct access to several order parameters, which we used to determine the lattice’s magnetic phases as well as critical disorder and one of its universal exponents. By tuning the degree of disorder and effective transverse magnetic field, we observed phase transitions between a paramagnetic, an antiferromagnetic, and a spin-glass phase.
    Keywords: Physics, Applied, Physics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-15
    Description: Weyl semimetals are expected to open up new horizons in physics and materials science because they provide the first realization of Weyl fermions and exhibit protected Fermi arc surface states. However, they had been found to be extremely rare in nature. Recently, a family of compounds, consisting of tantalum arsenide, tantalum phosphide (TaP), niobium arsenide, and niobium phosphide, was predicted as a Weyl semimetal candidates. We experimentally realize a Weyl semimetal state in TaP. Using photoemission spectroscopy, we directly observe the Weyl fermion cones and nodes in the bulk, and the Fermi arcs on the surface. Moreover, we find that the surface states show an unexpectedly rich structure, including both topological Fermi arcs and several topologically trivial closed contours in the vicinity of the Weyl points, which provides a promising platform to study the interplay between topological and trivial surface states on a Weyl semimetal’s surface. We directly demonstrate the bulk-boundary correspondence and establish the topologically nontrivial nature of the Weyl semimetal state in TaP, by resolving the net number of chiral edge modes on a closed path that encloses the Weyl node. This also provides, for the first time, an experimentally practical approach to demonstrating a bulk Weyl fermion from a surface state dispersion measured in photoemission.
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈p〉Follicular helper T (T〈sub〉FH〈/sub〉) cells are essential for generating protective humoral immunity. To date, microRNAs (miRNAs) have emerged as important players in regulating T〈sub〉FH〈/sub〉 cell biology. Here, we show that loss of miR-23~27~24 clusters in T cells resulted in elevated T〈sub〉FH〈/sub〉 cell frequencies upon different immune challenges, whereas overexpression of this miRNA family led to reduced T〈sub〉FH〈/sub〉 cell responses. Mechanistically, miR-23~27~24 clusters coordinately control T〈sub〉FH〈/sub〉 cells through targeting a network of genes that are crucial for T〈sub〉FH〈/sub〉 cell biology. Among them, thymocyte selection–associated HMG-box protein (TOX) was identified as a central transcription regulator in T〈sub〉FH〈/sub〉 cell development. TOX is highly up-regulated in both mouse and human T〈sub〉FH〈/sub〉 cells in a BCL6-dependent manner. In turn, TOX promotes the expression of multiple molecules that play critical roles in T〈sub〉FH〈/sub〉 cell differentiation and function. Collectively, our results establish a key miRNA regulon that maintains optimal T〈sub〉FH〈/sub〉 cell responses for resultant humoral immunity.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...