ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-04-07
    Description: Three cellular homologs of the v-erbA oncogene were previously identified in the rat; two of them encode high affinity receptors for the thyroid hormone triiodothyronine (T3). A rat complementary DNA clone encoding a T3 receptor form of the ErbA protein, called r-ErbA beta-2, was isolated. The r-ErbA beta-2 protein differs at its amino terminus from the previously described rat protein encoded by c-erbA beta and referred to as r-ErbA beta-1. Unlike the other members of the c-erbA proto-oncogene family, which have a wide tissue distribution, r-erbA beta-2 appears to be expressed only in the anterior pituitary gland. In addition, thyroid hormone downregulates r-erbA beta-2 messenger RNA but not r-erbA beta-1 messenger RNA in a pituitary tumor-derived cell line. The presence of a pituitary-specific form of the thyroid hormone receptor that may be selectively regulated by thyroid hormone could be important for the differential regulation of gene expression by T3 in the pituitary gland.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hodin, R A -- Lazar, M A -- Wintman, B I -- Darling, D S -- Koenig, R J -- Larsen, P R -- Moore, D D -- Chin, W W -- New York, N.Y. -- Science. 1989 Apr 7;244(4900):76-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Brigham and Women's Hospital, Boston, MA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2539642" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; Cloning, Molecular ; DNA/isolation & purification ; Molecular Sequence Data ; Nucleic Acid Hybridization ; Organ Specificity ; Pituitary Gland, Anterior/*metabolism ; Proto-Oncogene Proteins/genetics/*isolation & purification ; Rats ; Receptors, Thyroid Hormone/genetics/*isolation & purification ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2008-08-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazar, Mitchell A -- New York, N.Y. -- Science. 2008 Aug 22;321(5892):1048-9. doi: 10.1126/science.1164094.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, University of Pennsylavania, 415 Curie Boulevard, Philadelphia, PA 19104, USA. lazar@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18719271" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes, Brown/*cytology/*metabolism ; Adipocytes, White/cytology ; Adipose Tissue, Brown/metabolism ; Animals ; Cell Differentiation ; Energy Metabolism ; Fatty Acids/metabolism ; Gene Expression Profiling ; Humans ; Muscle Fibers, Skeletal/cytology ; Myogenic Regulatory Factor 5/metabolism ; Oxidation-Reduction ; Stem Cells/cytology ; Transcription Factors/metabolism ; Triglycerides/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-03-12
    Description: Disruption of the circadian clock exacerbates metabolic diseases, including obesity and diabetes. We show that histone deacetylase 3 (HDAC3) recruitment to the genome displays a circadian rhythm in mouse liver. Histone acetylation is inversely related to HDAC3 binding, and this rhythm is lost when HDAC3 is absent. Although amounts of HDAC3 are constant, its genomic recruitment in liver corresponds to the expression pattern of the circadian nuclear receptor Rev-erbalpha. Rev-erbalpha colocalizes with HDAC3 near genes regulating lipid metabolism, and deletion of HDAC3 or Rev-erbalpha in mouse liver causes hepatic steatosis. Thus, genomic recruitment of HDAC3 by Rev-erbalpha directs a circadian rhythm of histone acetylation and gene expression required for normal hepatic lipid homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3389392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feng, Dan -- Liu, Tao -- Sun, Zheng -- Bugge, Anne -- Mullican, Shannon E -- Alenghat, Theresa -- Liu, X Shirley -- Lazar, Mitchell A -- DK19525/DK/NIDDK NIH HHS/ -- DK43806/DK/NIDDK NIH HHS/ -- DK45586/DK/NIDDK NIH HHS/ -- DK49210/DK/NIDDK NIH HHS/ -- HG4069/HG/NHGRI NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- R01 DK045586/DK/NIDDK NIH HHS/ -- R37 DK043806/DK/NIDDK NIH HHS/ -- R37 DK043806-20/DK/NIDDK NIH HHS/ -- RC1 DK086239/DK/NIDDK NIH HHS/ -- RC1DK08623/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2011 Mar 11;331(6022):1315-9. doi: 10.1126/science.1198125.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21393543" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Binding Sites ; Chromatin Immunoprecipitation ; Chronobiology Disorders/genetics/metabolism ; *Circadian Clocks ; *Circadian Rhythm ; DNA/metabolism ; Epigenesis, Genetic ; Fatty Liver/*metabolism ; Gene Expression Regulation ; *Genome ; Histone Deacetylases/*metabolism ; Histones/metabolism ; Homeostasis ; *Lipid Metabolism ; Lipogenesis/genetics ; Liver/*metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Molecular Sequence Data ; Nuclear Receptor Co-Repressor 1/metabolism ; Nuclear Receptor Subfamily 1, Group D, Member 1/genetics/metabolism ; RNA Polymerase II/metabolism ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2005-01-22
    Description: The epidemic of obesity-associated diabetes is a major crisis in modern societies, in which food is plentiful and exercise is optional. The biological basis of this problem has been explored from evolutionary and mechanistic perspectives. Evolutionary theories, focusing on the potential survival advantages of "thrifty" genes that are now maladaptive, are of great interest but are inherently speculative and difficult to prove. Mechanistic studies have revealed numerous fat-derived molecules and a link to inflammation that, together, are hypothesized to underlie the obesity-diabetes connection and thereby represent prospective targets for therapeutic intervention.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazar, Mitchell A -- New York, N.Y. -- Science. 2005 Jan 21;307(5708):373-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Penn Diabetes Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6149, USA. lazar@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15662001" target="_blank"〉PubMed〈/a〉
    Keywords: Adipocytes/metabolism ; Adipose Tissue/metabolism ; Animals ; Biological Evolution ; Cytokines/metabolism ; Diabetes Mellitus, Type 2/epidemiology/*etiology/physiopathology ; Epigenesis, Genetic ; Fetal Nutrition Disorders/physiopathology ; Glucose/metabolism ; Humans ; Immunity, Innate ; Inflammation/physiopathology ; Insulin/physiology ; Insulin Resistance ; Leptin/blood/genetics/physiology ; Lipid Metabolism ; Macrophages/immunology/metabolism ; Obesity/*complications/epidemiology/genetics/physiopathology ; Phenotype ; Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-02-21
    Description: The association between obesity and diabetes supports an endocrine role for the adipocyte in maintaining glucose homeostasis. Here we report that mice lacking the adipocyte hormone resistin exhibit low blood glucose levels after fasting, due to reduced hepatic glucose production. This is partly mediated by activation of adenosine monophosphate-activated protein kinase and decreased expression of gluconeogenic enzymes in the liver. The data thus support a physiological function for resistin in the maintenance of blood glucose during fasting. Remarkably, lack of resistin diminishes the increase in post-fast blood glucose normally associated with increased weight, suggesting a role for resistin in mediating hyperglycemia associated with obesity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Banerjee, Ronadip R -- Rangwala, Shamina M -- Shapiro, Jennifer S -- Rich, A Sophie -- Rhoades, Ben -- Qi, Yong -- Wang, Juan -- Rajala, Michael W -- Pocai, Alessandro -- Scherer, Phillipp E -- Steppan, Claire M -- Ahima, Rexford S -- Obici, Silvana -- Rossetti, Luciano -- Lazar, Mitchell A -- NIH T32-GM008216/GM/NIGMS NIH HHS/ -- P01 DK49210/DK/NIDDK NIH HHS/ -- P30 DK19525/DK/NIDDK NIH HHS/ -- P60 DK20541/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2004 Feb 20;303(5661):1195-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Penn Diabetes Center, 611 CRB, 415 Curie Boulevard, Universityof Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14976316" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases ; Adipocytes/metabolism ; Animals ; Blood Glucose/*metabolism ; Body Weight ; Diet ; Dietary Fats/administration & dosage ; *Fasting ; Gene Targeting ; Gluconeogenesis ; Glucose Tolerance Test ; Glucose-6-Phosphatase/metabolism ; Homeostasis ; Hormones, Ectopic/administration & dosage/blood/genetics/*physiology ; Insulin/blood ; Liver/metabolism ; Male ; Mice ; Multienzyme Complexes/metabolism ; Obesity/metabolism ; Phosphoenolpyruvate Carboxykinase (GTP)/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Recombinant Proteins/administration & dosage ; Resistin ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-02-18
    Description: Lithium is commonly used to treat bipolar disorder, which is associated with altered circadian rhythm. Lithium is a potent inhibitor of glycogen synthase kinase 3 (GSK3), which regulates circadian rhythm in several organisms. In experiments with cultured cells, we show here that GSK3beta phosphorylates and stabilizes the orphan nuclear receptor Rev-erbalpha, a negative component of the circadian clock. Lithium treatment of cells leads to rapid proteasomal degradation of Rev-erbalpha and activation of clock gene Bmal1. A form of Rev-erbalpha that is insensitive to lithium interferes with the expression of circadian genes. Control of Rev-erbalpha protein stability is thus a critical component of the peripheral clock and a biological target of lithium therapy.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Lei -- Wang, Jing -- Klein, Peter S -- Lazar, Mitchell A -- DK 19525/DK/NIDDK NIH HHS/ -- DK45586/DK/NIDDK NIH HHS/ -- MH058324/MH/NIMH NIH HHS/ -- R01 MH058324/MH/NIMH NIH HHS/ -- R01 MH058324-07/MH/NIMH NIH HHS/ -- R01 MH058324-08/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2006 Feb 17;311(5763):1002-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, and University of Pennsylvania School of Medicine, 415 Curie Boulevard, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16484495" target="_blank"〉PubMed〈/a〉
    Keywords: ARNTL Transcription Factors ; Amino Acid Sequence ; Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism ; Biological Clocks/*physiology ; Cell Line ; Cell Line, Tumor ; Circadian Rhythm/*physiology ; DNA-Binding Proteins/chemistry/genetics/*metabolism ; Down-Regulation ; Gene Expression Regulation ; Glycogen Synthase Kinase 3/antagonists & inhibitors/metabolism ; Humans ; Lithium Chloride/*pharmacology ; Mice ; Molecular Sequence Data ; NIH 3T3 Cells ; Nuclear Receptor Subfamily 1, Group D, Member 1 ; Phosphorylation ; Promoter Regions, Genetic ; Proteasome Endopeptidase Complex/metabolism ; Proteasome Inhibitors ; Receptors, Cytoplasmic and Nuclear/chemistry/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-11-17
    Description: The circadian clock temporally coordinates metabolic homeostasis in mammals. Central to this is heme, an iron-containing porphyrin that serves as prosthetic group for enzymes involved in oxidative metabolism as well as transcription factors that regulate circadian rhythmicity. The circadian factor that integrates this dual function of heme is not known. We show that heme binds reversibly to the orphan nuclear receptor Rev-erbalpha, a critical negative component of the circadian core clock, and regulates its interaction with a nuclear receptor corepressor complex. Furthermore, heme suppresses hepatic gluconeogenic gene expression and glucose output through Rev-erbalpha-mediated gene repression. Thus, Rev-erbalpha serves as a heme sensor that coordinates the cellular clock, glucose homeostasis, and energy metabolism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yin, Lei -- Wu, Nan -- Curtin, Joshua C -- Qatanani, Mohammed -- Szwergold, Nava R -- Reid, Robert A -- Waitt, Gregory M -- Parks, Derek J -- Pearce, Kenneth H -- Wisely, G Bruce -- Lazar, Mitchell A -- R01 DK45586/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2007 Dec 14;318(5857):1786-9. Epub 2007 Nov 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18006707" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Clocks ; Cell Line ; Cell Line, Tumor ; *Circadian Rhythm/genetics ; DNA-Binding Proteins/*metabolism ; Energy Metabolism ; *Gene Expression Regulation ; Gluconeogenesis/genetics ; Glucose/*metabolism ; Glucose-6-Phosphatase/genetics/metabolism ; Heme/*metabolism ; Hemin/pharmacology ; Histone Deacetylases/metabolism ; Homeostasis ; Humans ; Male ; *Metabolic Networks and Pathways ; Mice ; Nuclear Proteins/metabolism ; Nuclear Receptor Co-Repressor 1 ; Nuclear Receptor Subfamily 1, Group D, Member 1 ; Receptors, Cytoplasmic and Nuclear/*metabolism ; Repressor Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-06-30
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lazar, Mitchell A -- Birnbaum, Morris J -- P01 CA093615/CA/NCI NIH HHS/ -- P01 DK49210/DK/NIDDK NIH HHS/ -- R01 DK056886/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2012 Jun 29;336(6089):1651-2. doi: 10.1126/science.1221834.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. lazar@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22745413" target="_blank"〉PubMed〈/a〉
    Keywords: Humans ; Metabolic Diseases/metabolism ; *Metabolism ; Neoplasms/metabolism ; Signal Transduction ; Terminology as Topic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-08-24
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ahima, Rexford S -- Lazar, Mitchell A -- P01-DK-049210/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 23;341(6148):856-8. doi: 10.1126/science.1241244.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, and the Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. ahima@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23970691" target="_blank"〉PubMed〈/a〉
    Keywords: *Body Mass Index ; Body Weight/*physiology ; Cardiovascular Diseases/epidemiology/mortality ; *Cause of Death ; Diabetes Mellitus/epidemiology/mortality ; Female ; Humans ; Male ; Obesity/*mortality/*physiopathology ; Risk
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-06
    Description: Circadian and metabolic physiology are intricately intertwined, as illustrated by Rev-erbalpha, a transcription factor (TF) that functions both as a core repressive component of the cell-autonomous clock and as a regulator of metabolic genes. Here, we show that Rev-erbalpha modulates the clock and metabolism by different genomic mechanisms. Clock control requires Rev-erbalpha to bind directly to the genome at its cognate sites, where it competes with activating ROR TFs. By contrast, Rev-erbalpha regulates metabolic genes primarily by recruiting the HDAC3 co-repressor to sites to which it is tethered by cell type-specific transcription factors. Thus, direct competition between Rev-erbalpha and ROR TFs provides a universal mechanism for self-sustained control of the molecular clock across all tissues, whereas Rev-erbalpha uses lineage-determining factors to convey a tissue-specific epigenomic rhythm that regulates metabolism tailored to the specific need of that tissue.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613749/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4613749/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Yuxiang -- Fang, Bin -- Emmett, Matthew J -- Damle, Manashree -- Sun, Zheng -- Feng, Dan -- Armour, Sean M -- Remsberg, Jarrett R -- Jager, Jennifer -- Soccio, Raymond E -- Steger, David J -- Lazar, Mitchell A -- F30 DK104513/DK/NIDDK NIH HHS/ -- F32 DK102284/DK/NIDDK NIH HHS/ -- K08 DK094968/DK/NIDDK NIH HHS/ -- P30 DK019525/DK/NIDDK NIH HHS/ -- P30 DK050306/DK/NIDDK NIH HHS/ -- P30 DK19525/DK/NIDDK NIH HHS/ -- R00 DK099443/DK/NIDDK NIH HHS/ -- R01 DK045586/DK/NIDDK NIH HHS/ -- R01 DK098542/DK/NIDDK NIH HHS/ -- R01 DK45586/DK/NIDDK NIH HHS/ -- T32 GM0008275/GM/NIGMS NIH HHS/ -- T32 GM008275/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 Jun 26;348(6242):1488-92. doi: 10.1126/science.aab3021. Epub 2015 Jun 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. ; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Department of Molecular and Cellular Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA. ; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. lazar@mail.med.upenn.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26044300" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CLOCK Proteins/*genetics ; Circadian Clocks/*genetics ; Circadian Rhythm/*genetics ; *Gene Expression Regulation ; Hepatocyte Nuclear Factor 6/metabolism ; Histone Deacetylases/*metabolism ; Lipid Metabolism/genetics ; Liver/metabolism ; Male ; Metabolism/*genetics ; Mice, Inbred C57BL ; Mice, Knockout ; Nuclear Receptor Subfamily 1, Group D, Member 1/genetics/*metabolism ; Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism ; Organ Specificity ; Protein Binding ; Tissue Distribution
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...