ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physical Society (APS)  (2)
  • American Association for the Advancement of Science (AAAS)  (1)
  • 1
    Publication Date: 2012-05-15
    Description: The virulence mechanisms that allow pathogens to colonize the intestine remain unclear. Here, we show that germ-free animals are unable to eradicate Citrobacter rodentium, a model for human infections with attaching and effacing bacteria. Early in infection, virulence genes were expressed and required for pathogen growth in conventionally raised mice but not germ-free mice. Virulence gene expression was down-regulated during the late phase of infection, which led to relocation of the pathogen to the intestinal lumen where it was outcompeted by commensals. The ability of commensals to outcompete C. rodentium was determined, at least in part, by the capacity of the pathogen and commensals to grow on structurally similar carbohydrates. Thus, pathogen colonization is controlled by bacterial virulence and through competition with metabolically related commensals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439148/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439148/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kamada, Nobuhiko -- Kim, Yun-Gi -- Sham, Ho Pan -- Vallance, Bruce A -- Puente, Jose L -- Martens, Eric C -- Nunez, Gabriel -- DK091191/DK/NIDDK NIH HHS/ -- DK61707/DK/NIDDK NIH HHS/ -- R01 DK061707/DK/NIDDK NIH HHS/ -- R01 DK091191/DK/NIDDK NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2012 Jun 8;336(6086):1325-9. doi: 10.1126/science.1222195. Epub 2012 May 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22582016" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacterial Load ; Bacterial Proteins/genetics/metabolism ; Bacteroides/*growth & development ; Citrobacter rodentium/genetics/growth & development/immunology/*pathogenicity ; Enterobacteriaceae Infections/immunology/*microbiology ; Escherichia coli/*growth & development ; Feces/microbiology ; Gene Expression Regulation, Bacterial ; Germ-Free Life ; Intestinal Mucosa/*microbiology ; Intestines/*microbiology ; *Metagenome ; Mice ; Mice, Inbred C57BL ; *Microbial Interactions ; Specific Pathogen-Free Organisms ; Virulence Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-27
    Description: Author(s): C. Martens, A. Bill, and G. Seibold Heterostructures made of itinerant ferromagnets and superconductors are studied. In contrast to most previous models, ferromagnetism is not enforced by an effective Zeeman field but induced in a correlated single-band model (CSBM) that displays itinerant ferromagnetism as a mean-field ground state. ... [Phys. Rev. B 98, 174513] Published Mon Nov 26, 2018
    Keywords: Superfluidity and superconductivity
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-31
    Description: Author(s): Feng Xu (徐峰), Craig C. Martens, and Yujun Zheng (郑雨军) In this paper we present a trajectory-based formulation of entanglement dynamics by employing the Wigner function. The linear entropy of a single trajectory is derived based on the trajectory evolution of the Wigner function. The entanglement dynamics with a separable Gaussian initial state is inves... [Phys. Rev. A 96, 022138] Published Tue Aug 29, 2017
    Keywords: Fundamental concepts
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...