ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ASLO (Association for the Sciences of Limnology and Oceanography)  (27)
  • Mare  (2)
  • 1
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 44 . pp. 440-446.
    Publication Date: 2018-06-25
    Description: Cellular nutrient ratios are often applied as indicators of nutrient limitation in phytoplankton studies, especially the so-called Redfield ratio. For periphyton, similar data are scarce. We investigated the changes in cellular C: N: P stoichiometry of benthic microalgae in response to different levels and types of nutrient limitation and a variety of abiotic conditions in laboratory experiments with natural inocula. C: N ratios increased with decreasing growth rate, irrespective of the limiting nutrient. At the highest growth rates, the C: N ratio ranged uniformly around 7.5. N: P ratios 〈13 indicated N limitation, while N: P ratios 〉22 indicated P limitation. Under P limitation, the C: P ratios increased at low growth rate and varied around 130 at highest growth rates. For a medium with balanced supply of N and P, an optimal stoichiometric ratio of C: N: P = 119 : 17 : 1 could be deduced for benthic microalgae, which is slightly higher than the Redfield ratio (106 : 16 : 1) considered typical for optimally growing phytoplankton. The optimal ratio was stable against changes in abiotic conditions. In conclusion, cellular nutrient ratios are proposed as an indicator for nutrient status in periphyton.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 61 (3). pp. 853-868.
    Publication Date: 2019-02-01
    Description: Increasing seawater temperature and CO2 concentrations both are expected to increase coastal phytoplankton biomass and carbon to nutrient ratios in nutrient limited seasonally stratified summer conditions. This is because temperature enhances phytoplankton growth while grazing is suggested to be reduced during such bottom-up controlled situations. In addition, enhanced CO2 concentrations potentially favor phytoplankton species, that otherwise depend on costly carbon concentrating mechanisms (CCM). The trophic consequences for consumers under such conditions, however, remain little understood. We set out to experimentally explore the combined effects of increasing temperature and CO2 concentration for phytoplankton biomass and stoichiometry and the consequences for trophic transfer (here for copepods) on a natural nutrient limited Baltic Sea summer plankton community. The results show, that warming effects were translated to the next trophic level by switching the system from a bottom-up controlled to a mainly top-down controlled one. This was reflected in significantly down-grazed phytoplankton and increased zooplankton abundance in the warm temperature treatment (22.5°C). Additionally, at low temperature (16.5°C) rising CO2 concentrations significantly increased phytoplankton biomass. The latter effect however, was due to direct negative impact of CO2 on copepod nauplii which released phytoplankton from grazing in the cold but not in the warm treatments. Our results suggest that future seawater warming has the potential to switch trophic relations between phytoplankton and their grazers under nutrient limited conditions with the consequence of potentially disguising CO2 effects on coastal phytoplankton biomass.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 49 . pp. 1435-1445.
    Publication Date: 2019-09-23
    Description: Microzooplankton have received increased attention as an important trophic link between the microbial loop and calanoid copepods. On the basis of food size spectra overlap in some microzooplankton groups and calanoid copepods, however, such microzooplankton could function as competitors rather than as food for calanoid copepods (intraguild prey). Mixotrophic flagellates presumably represent a link between the microbial loop and the micro and mesozooplankton. We investigated the effects of microzooplankton and mixotrophy by altering the presence of a heterotrophic dinoflagellate and of a mixotrophic nanoflagellate in artificial food webs with calanoid copepods as terminal consumers. Overall system productivity was manipulated by two levels of nutrient enrichment. The heterotrophic dinoflagellate drastically reduced the nanophytoplankton and enhanced the reproduction of the copepods, suggesting that its role as a competitor is negligible compared to its function as a trophic link. In spite of the presence of heterotrophic nanoflagellates, the mixotroph had a strong negative effect on the picophytoplankton and (presumably) on bacterial biomass. At the same time, the mixotroph enhanced the atomic C:N ratio of the seston biomass, indicating a higher efficiency in overall primary production. Copepod reproduction was enhanced in the presence of the mixotrophic nanoflagellate. Results did not support predictions of the intraguild predation theory: The ratios of the intraguild predators and their preys were not affected by overall system productivity
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-08-14
    Description: We quantify, compare, and generalize responses of experimental nutrient loadings (LN) on planktonic community structure and function in coastal waters. Data were derived from three mesocosm experiments undertaken in Baltic (BAL), Mediterranean (MED), and Norwegian (NOR) coastal waters. A planktonic model with seven functional compartments and 30-32 different carbon flows fit to all three experiments was used as a framework for flow-rate estimation and comparison. Flows were estimated on the basis of time series of measured biomass, some measured flows, and inverse modeling. Biomass and gross uptake rate of carbon of most groups increased linearly with increasing LN in the nutrient input range of 0-1 µmol N L-1 d-1 at all locations. The fate of the gross primary production (GPP) was similar in all systems. Autotrophic biomass varied by two orders of magnitude among locations, with the lowest biomass and response to nutrient addition in MED waters. The variation of GPP among sites was less than one order of magnitude. Mesozooplankton dominated by doliolids (Tunicata), but not those dominated by copepods, presumably exerted efficient control of the autotrophic biomass, thereby buffering responses of autotrophs to high nutrient input. Among the many factors that can modify the responses of autotrophs to nutrients, the time scale over which the enrichment is made and the precise mode of nutrient enrichment are important. We suggest a general concept that may contribute to a scientific basis for understanding and managing coastal eutrophication
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 44 . pp. 1114-1119.
    Publication Date: 2019-09-23
    Description: According to Connell�s intermediate disturbance hypothesis (IDH), diversity within a community is maximal at intermediate frequencies and intensities of disturbances. In order to test the IDH, disturbances of different frequencies and intensities were imposed on natural plankton communities in controlled field experiments. These disturbances consisted of an artificial deepening of the mixed layer, leading to the dilution of epilimnetic populations and to a higher level of nutrients. Intervals between disturbances ranged from 2 to 12 d. Different intensities of disturbance were caused by differences in the experimental mixing depth (150 and 225% of the original epilimnion depth). Investigation focused on the effect that disturbances had on the diversity of natural phytoplankton communities. Additionally, we were interested in determining the effect of grazing by zooplankton. The results of the field experiments show for the first time the applicability of the IDH to phytoplankton within complete planktonic communities. Diversity showed a clear maximum at the intermediate disturbance interval of 6 d. Similarly, species number peaked at intermediate interval length (6-10 d).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 46 . pp. 749-757.
    Publication Date: 2018-06-25
    Description: In contrast to most pelagic primary producers, benthic macrophytes pass through morphologically distinct life stages, which can be subject to different ecological controls. Using factorial field experiments, we investigated how grazing pressure (three levels) and nutrient supply (four levels) interact in controlling the passage of marine macroalgae through an apparent recruitment bottleneck at the germling stage. In comparative experiments, we asked whether relative bottom-up and top-down effects on early life stages (〈4 week germlings) vary (1) between the eutrophic Baltic Sea and the oligotrophic NW Atlantic, (2) across seasons in the NW Atlantic, and (3) among annual and perennial macroalgae. In both systems nutrient enrichment favored and grazers suppressed recruitment of green and brown annual algae; however, enrichment effects were much more pronounced in the Baltic, whereas grazer effects dominated in the NW Atlantic. Grazers induced a shift from grazer-susceptible green to more resistant brown algae in the Baltic without reducing total germling density. In the NW Atlantic, grazers strongly reduced overall recruitment rate throughout all seasons. Effects on perennials were similar in both systems with moderate losses to grazing and no effects of nutrient enrichment. Recruit densities and species composition shifted with season in the NW Atlantic. We conclude that the relative effects of grazers and nutrient enrichment depended on the nutrient status of the system, algal life history strategy, and season. Strong bottom-up and top-down controls shape benthic community composition before macroalgae reach visible size
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 42 (7). pp. 1622-1628.
    Publication Date: 2018-06-25
    Description: Periphyton grazing by the marine isopod Idothea chelipes was studied by exposing periphyton grown on glass slides to a gradient of grazer densities. An analysis of the algal growth rates and their relationships to grazer density revealed two groups of algae. The unicellular diatoms Licmophora ehrenbergii, Fragilaria tabulata, Navicula spp., Cocconeis costata, and the green alga Ulothrix implexa had high maximal growth rates (0.90–1.47 d−1) and suffered high grazing losses (0.41–0.68 d−1 per grazer ind.). The tube dwelling diatom Amphipleura rutilans and the cyanobacteria Lyngbya confervoides and Spirulina subsalsa had low maximal growth rates (0.38–0.81 d−1) and suffered only moderate grazing losses (0.10–0.27 d−1 per grazer ind.). The species of the first group seemed to be less strongly resource limited than did the species of the second group. Grazing by I. chelipes has the potential to drive succession from the well‐edible to the less edible periphyton species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 29 (3). pp. 633-636.
    Publication Date: 2018-06-06
    Description: Competition experiments with phytoplankton under steady state conditions have largely verified the competitive exclusion principle. Coexistence of species limited by different resources contributes little to the explanation of the natural diversity of phytoplankton. It is shown by multispecies experiments in flow-through cultures that pulsed input of a key nutrient allows the coexistence of species competing for the same resource.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 30 . pp. 436-440.
    Publication Date: 2018-05-29
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 62 (1). pp. 334-347.
    Publication Date: 2020-02-06
    Description: Marine phytoplankton is simultaneously affected by multiple environmental drivers. To-date integrative assessments of multiple combined effects are rare on the relationship between elemental stoichiometry and biochemicals in marine phytoplankton. We investigated responses of stoichiometric (N:C and P:C ratios) and fatty acid-based (polyunsaturated fatty acid, PUFA) indicators of nutritional quality to three N:P supply ratios (10:1, 24:1, and 63:1 mol mol−1), three temperatures (12, 18, and 24°C) and two pCO2 levels (560 and 2400 μatm) in the marine phytoplankters Rhodomonas sp. and Phaeodactylum tricornutum. Overall, warming and nutrient deficiency showed dramatic effects, but increased pCO2 had modest effects on the two indicators of nutritional quality. Specifically, warming showed strong positive effects on N:C and P:C ratios in Rhodomonas sp. but negative effects on PUFAs in both species. The low N- and low P-media led to low contents of both nutrients but high contents of PUFAs in the biomass of Rhodomonas sp., while the response of P. tricornutum was more complex: N:C ratios were lowest at the intermediate N:P supply but P:C ratios responded negatively to P deficiency and positively to N deficiency. Large variations in the two indicators of nutritional quality can be attributed to species-specific physiological optima and interactions between the three manipulated variables. Our results suggest that stoichiometric and FA-based indicators of nutritional quality may change differentially in response to warming and nutrient deficiency in marine phytoplankton, highlighting the relevance of simultaneous considerations of the two indicators of nutritional quality, when assessing food web dynamics under future ocean scenarios.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...