ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (29)
  • Annual Reviews Inc.  (2)
  • 1
    Publication Date: 2021-04-21
    Description: Anthropogenic activities have resulted in enhanced lead (Pb) emissions to the environment over the past century, mainly through the combustion of leaded gasoline. Here, we present the first combined dissolved (DPb), labile (LpPb) and particulate (PPb) Pb dataset from the Northeast Atlantic (Celtic Sea) since the phasing out of leaded gasoline in Europe. Concentrations of DPb in surface waters have decreased by 4-fold over the last four decades. We demonstrate that anthropogenic Pb is transported from the Mediterranean Sea over long distances (〉2500 km). Benthic DPb fluxes exceeded the atmospheric Pb flux in the region, indicating the importance of sediments as a contemporary Pb source. A strong positive correlation between DPb, PPb and LpPb indicates a dynamic equilibrium between the phases and the potential for particles to ‘buffer’ the DPb pool. This study provides insights into Pb biogeochemical cycling and demonstrates the potential of Pb in constraining ocean circulation patterns.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Global Biogeochemical Cycles, 31 (8). pp. 1256-1270.
    Publication Date: 2021-04-21
    Description: Based on an unprecedented dissolved barium (D_Ba) data set collected in the Mediterranean Sea during a zonal transect between the Lebanon coast and Gibraltar (M84/3 cruise, April 2011), we decompose the D_Ba distribution to isolate the contribution of biogeochemical processes from the impact of the oceanic circulation. We have built a simple parametric water mass analysis (Parametric Optimum Multiparameter analysis) to reconstruct the contribution of the different Mediterranean water masses to the thermohaline structure. These water mass fractions have then been used to successfully reconstruct the background vertical gradient of D_Ba reflecting the balance between the large-scale oceanic circulation and the biological activity over long time scales. Superimposed on the background field, several D_Ba anomalies have been identified. Positive anomalies are associated with topographic obstacles and may be explained by the dissolution of particulate biogenic barium (P_Ba barite) of material resuspended by the local currents. The derived dissolution rates range from 0.06 to 0.21 μmol m−2 d−1. Negative anomalies are present in the mesopelagic region of the western and eastern basins (except in the easternmost Levantine basin) as well as in the abyssal western basin. This represents the first quantification of the nonconservative component of the D_Ba signal. These mesopelagic anomalies could reflect the subtraction of D_Ba during P_Ba barite formation occurring during organic carbon remineralization. The deep anomalies may potentially reflect the transport of material toward the deep sea during winter deep convection and the subsequent remineralization. The D_Ba subtraction fluxes range from −0.07 to −1.28 μmol m−2 d−1. D_Ba-derived fluxes of P_Ba barite (up to 0.21 μmol m−2 d−1) and organic carbon (13 to 29 mmol C m−2 d−1) are in good agreement with other independent measurements suggesting that D_Ba can help constrain remineralization horizons. This study highlights the importance of quantifying the impact of the large-scale oceanic circulation in order to better understand the biogeochemical cycling of elements and to build reliable geochemical proxies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-21
    Description: Global ship-based programs, with highly accurate, full water column physical and biogeochemical observations repeated decadally since the 1970s, provide a crucial resource for documenting ocean change. The ocean, a central component of Earth’s climate system, is taking up most of Earth’s excess anthropogenic heat, with about 19% of this excess in the abyssal ocean beneath 2,000 m, dominated by Southern Ocean warming. The ocean also has taken up about 27% of anthropogenic carbon, resulting in acidification of the upper ocean. Increased stratification has resulted in a decline in oxygen and increase in nutrients in the Northern Hemisphere thermocline and an expansion of tropical oxygen minimum zones. Southern Hemisphere thermocline oxygen increased in the 2000s owing to stronger wind forcing and ventilation. The most recent decade of global hydrography has mapped dissolved organic carbon, a large, bioactive reservoir, for the first time and quantified its contribution to export production (∼20%) and deep-ocean oxygen utilization. Ship-based measurements also show that vertical diffusivity increases from a minimum in the thermocline to a maximum within the bottom 1,500 m, shifting our physical paradigm of the ocean’s overturning circulation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 40 (5). pp. 927-932.
    Publication Date: 2021-04-21
    Description: Transient tracer measurements can constrain the rates and pathways of ocean ventilation and act as proxies for biogeochemically relevant gases such as CO2 and oxygen. Various techniques have deduced changes in ocean ventilation over decadal timescales using transient tracer measurements made on repeat sections, but these require a priori assumptions about mixing in the ocean interior. Here, we introduce a simple, direct observational method that takes advantage of the similar atmospheric increase rates of chlorofluorocarbon-12 and sulfur hexafluoride, but with a time lag (offset) of 1415 years. Such repeat measurements can be directly compared without prior assumptions about mixing. A difference larger than similar to 2 years between modern sulfur hexafluoride and historical chlorofluorocarbon-12 tracer ages implies a change in ventilation, although lack of difference does not necessarily imply no change. Several tracer data sets are presented, which suggest changes in ventilation in the South Pacific and North Atlantic Oceans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 36 . L20607.
    Publication Date: 2019-09-23
    Description: Observations and model results both indicate increasing oxygen minimum zones (OMZ) in the tropical oceans. Here we report on record low dissolved oxygen minimum concentrations in the eastern tropical North Atlantic in fall of 2008, with less than 40 mu mol kg(-1) in the core of the OMZ. There we find a deoxygenation rate of similar to 0.5 mu mol kg(-1) a(-1) during the last decades on two repeat sections at 7.5 and 11 degrees N. The potential temperature and salinity in the surface and central water layers increased on both sections compared to previous observations. However, in contrast to the oxygen decrease in the core of the OMZ, increasing oxygen concentrations were observed in the central water layer above the OMZ. The observed deoxygenation was thus restricted to the core of the oxygen minimum layer. It remains unclear whether the vertical expansion of the oxygen minimum represents a long time trend or decadal variations
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 23 (GB3010).
    Publication Date: 2018-03-20
    Description: The oceans absorb and store a significant portion of anthropogenic CO2 emissions, but large uncertainties remain in the quantification of this sink. An improved assessment of the present and future oceanic carbon sink is therefore necessary to provide recommendations for long‐term global carbon cycle and climate policies. The formation of North Atlantic Deep Water (NADW) is a unique fast track for transporting anthropogenic CO2 into the ocean's interior, making the deep waters rich in anthropogenic carbon. Thus the Atlantic is presently estimated to hold 38% of the oceanic anthropogenic CO2 inventory, although its volume makes up only 25% of the world ocean. Here we analyze the inventory change of anthropogenic CO2 in the Atlantic between 1997 and 2003 and its relationship to NADW formation. For the whole region between 20°S and 65°N the inventory amounts to 32.5 ± 9.5 Petagram carbon (Pg C) in 1997 and increases up to 36.0 ± 10.5 Pg C in 2003. This result is quite similar to earlier studies. Moreover, the overall increase of anthropogenic carbon is in close agreement with the expected change due to rising atmospheric CO2 levels of 1.69% a−1. On the other hand, when considering the subpolar region only, the results demonstrate that the recent weakening in the formation of Labrador Sea Water, a component of NADW, has already led to a decrease of the anthropogenic carbon inventory in this water mass. As a consequence, the overall inventory for the total water column in the western subpolar North Atlantic increased only by 2% between 1997 and 2003, much less than the 11% that would be expected from the increase in atmospheric CO2 levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 89 (43).
    Publication Date: 2017-03-03
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 91 (48). pp. 457-458.
    Publication Date: 2017-02-10
    Description: The Bering Sea is one of the most productive marine ecosystems in the world, sustaining nearly half of U.S. annual commercial fish catches and providing food and cultural value to thousands of coastal and island residents. Fish and crab are abundant in the Bering Sea; whales, seals, and seabirds migrate there every year. In winter, the topography, latitude, atmosphere, and ocean circulation combine to produce a sea ice advance in the Bering Sea unmatched elsewhere in the Northern Hemisphere, and in spring the retreating ice; longer daylight hours; and nutrient-rich, deep-ocean waters forced up onto the broad continental shelf result in intense marine productivity (Figure 1). This seasonal ice cover is a major driver of Bering Sea ecology, making this ecosystem particularly sensitive to changes in climate. Predicted changes in ice cover in the coming decades have intensified concern about the future of this economically and culturally important region. In response, the North Pacific Research Board (NPRB) and the U.S. National Science Foundation (NSF) entered into a partnership in 2007 to support the Bering Sea Project, a comprehensive $52 million investigation to understand how climate change is affecting the Bering Sea ecosystem, ranging from lower trophic levels (e.g., plankton) to fish, seabirds, marine mammals, and, ultimately, humans. The project integrates two research programs, the NSF Bering Ecosystem Study (BEST) and the NPRB Bering Sea Integrated Ecosystem Research Program (BSIERP), with substantial in-kind contributions from the U.S. National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Oceans, 115 (C12).
    Publication Date: 2019-09-23
    Description: This work presents data of dichlorodifluoromethane (CFC-12), dissolved inorganic carbon and total alkalinity from a cruise to the Mediterranean Sea during October–November 2001, with the main focus on the CFC-12 data and on the eastern basin. Using the transit time distribution method, the anthropogenic carbon concentrations in the basin were estimated. Results were cross-checked with a back-calculation technique. The entire water column of the Mediterranean Sea contains anthropogenic CO2, with minimum concentrations of 20.5 μmol kg−1 (error range: 16.9–27.1 μmol kg−1) in the most eastern part of the basin at intermediate depths, where the waters' mean age is 〉130 yr. Column inventories of up to 154 mol m−2 (132–179 mol m−2) are found and a total inventory of 1.7 Pg (1.3–2.1 Pg) of anthropogenic carbon in the Mediterranean Sea was estimated. There is a net flux of 38 Tg yr−1 (30–47 Tg yr−1) of dissolved inorganic carbon through the Strait of Gibraltar into the Atlantic Ocean and an opposite net flux of 3.5 Tg yr−1 (−1.8–9.2 Tg yr−1) of anthropogenic carbon into the Mediterranean Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: A deliberate tracer release experiment in 2008–2010 was used to study diapycnal mixing in the tropical northeastern Atlantic. The tracer (CF3SF5) was injected on the isopycnal surface σΘ = 26.88 kg m−3, which corresponds to about 330 m depth. Three surveys, performed 7, 20, and 30 months after the release, sampled the vertically and laterally expanding tracer patch. The mean diapycnal mixing estimate over the entire region occupied by the tracer and the period of 30 months was found to be (1.19 ± 0.18) × 10−5 m2 s−1, or, alternatively, (3.07 ± 0.58) × 10−11 (kg m−3)2 s−1 as computed from the advection-diffusion equation in isopycnal coordinates with the thickness-weighted averaging. The latter method is preferable in the regions of different stratification for it yields local diapycnal mixing estimates varying less with stratification than their Cartesian coordinate counterparts. Results of this study are comparable to the results of the North Atlantic tracer release experiment (NATRE). However, the internal wave-wave interaction models predict reduced mixing from the breaking of internal waves at low latitudes. Thus, the diapycnal diffusivity found in this study is higher than parameterized by the low latitude of the site (4°N–12°N).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...