ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1970-1974  (23)
Collection
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 105-120 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Radiation-induced emulsion polymerization of ethylene with ammonium perfluoro-octanoate as an emulsifier was studied in order to elucidate the effect of the number of polymer particles. Owing to the stable structure of the emulsifier from a radical attack, no C—F bond was detected in the polyethylene as expected. The polyethylene produced was mostly gel containing a small amount of low molecular weight polyethylene. This may be attributable to chain transfer to the polyethylene. The effects of dose rate and of concentration of the emulsifier were determined without considering the chain-transfer reaction to the emulsifier. By considering the escape of the radical which is produced by chain transfer to the monomer from the polymer particle to the aqueous phase at the steady state, the following equation is derived: \documentclass{article}\pagestyle{empty}\begin{document}$$ \frac{{R_p }}{I} = \frac{{K_i K_p ^2 [{\rm N}_{\rm T} ]}}{{2K_0 \alpha R_p }} - \frac{{K_i K_p }}{{K_{0\alpha } }} $$\end{document} The experimental results could be explained by this equation, and the apparent rate constants were obtained.
    Additional Material: 22 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 627-637 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The emulsion copolymerization of ethylene with hexafluoropropylene was studied by using 60Co γ-radiation as the initiator. The apparent rate of copolymerization is proportional to the 1.6 power of ethylene fugacity. The activation volume was calculated from the pressure dependence of the apparent rate constant of copolymerization and was -30 ml/mole, which is smaller than the value reported by Wada et al. for ethylene polymerization in tert-butyl alcohol. The copolymer produced had a broad composition from ethylene-rich to alternative. As expected, the former was a crystalline, polyethylenelike copolymer, but the latter was an amorphous and rubberlike copolymer. The glass transition temperature of the copolymers increased with an increase in hexafluoropropylene content. The thermal degradation temperature in an atmosphere of nitrogen decreased slightly with introduction of hexafluoropropylene in polyethylene, but the thermal degradation behavior in air was complicated by the introduction of hexafluoropropylene.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 535-552 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effects of pressure, temperature, and additives on the rate of radiation-induced emulsion polymerization of ethylene with FC-143 as emulsifier were studied kinetically. The rate of polymerization was proportional to the 2.5 power of ethylene fugacity, and the apparent rate constant (rate of polymerization/2.5 power of ethylene fugacity) was constant below 78°C. Above this temperature, the rate constant decreased with an apparent activation energy of -8.2 kcal/mole. These facts can be interpreted in connection with the polymer structure and the change of rate of escape of radicals from the polymer structure and the change of rate of escape of radicals from the polymer particle into the aqueous phase. The rate of polymerization decreased on addition of a series of n-aliphatic alcohols due to the chain-transfer reaction and consequent escape of radicals to the aqueous phase. On the other hand, the addition of tert-butyl alcohol increased the rate of polymerization, probably because of its effect in increasing swelling of the polymer particles. Addition of electrolytes increased the rate of polymeriaztion as a result of the increase of the number of polymer particles.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 2027-2033 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The role of chain transfer was studied for the radiation-induced polymerization of ethylene in precipitating media, namely n-butyl alcohol, tert-butyl alcohol and their mixtures. The affinities of those solvents for polyethylene are similar, but the chain-transfer coefficient of n-butyl alcohol is larger than that of tert-butyl alcohol. The polymerizations were carried out in a reactor of 100 ml under a pressure of 300 kg/cm2, at 60°C, dose rate of 3.07 × 104-1.75 × 105 rad/hr in the presence of 50 ml of solvents. The polymerization in tert-butyl alcohol shows the kinetic behavior characteristic of a heterogeneous polymerization, such as rate acceleration, high dose rate dependence of polymerization rate, and low dose rate dependence of polymer molecular weight, whereas the polymerization in n-butyl alcohol does not exhibit such behavior and gives polymer having a molecular weight much lower than that of polymer obtained in tert-butyl alcohol. The polymer formed in tert-butyl alcohol exhibits a bimodal molecular weight distribution measured by gel permeation chromatography. In mixed tert-butyl alcohol and n-butyl alcohol solvent, with increasing fraction of n-butyl alcohol, the two peaks not only shift to lower molecular weight but the higher molecular weight peak becomes relatively small. Eventually, the polymer formed in n-butyl alcohol exhibits a unimodal distribution. Those results are well explained on the basis of the proposed scheme for heterogeneous polymerization.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 2403-2417 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The radiation-induced emulsion polymerization of ethylene in a continuous flow system was carried out at 100°C by using FC-143 and potassium myristate. The polymer concentration in the latex during the course of the polymerization oscillated several times and then approached a steady-state value in a few hours in the case of short residence time. The rate of polymerization was almost constant within the residence time range of 0.2-0.9 hr. This is explained by the kinetics assuming the same mechanism previously proposed in the batch system, that is, the number of polymer particles in this range is considered to be constant. Gel formation was observed at longer reaction times in spite of the continuous supply of myristate micelles, possibly because large polymer particles are produced in this stage. The concentration of carbonyl group in the polymer produced by chain transfer to absorbed myristate ion changes in the same way as the polymer concentration with reaction time. The methyl group in the polymer is produced mainly by chain transfer to the polymer, and the concentration is nearly constant during the polymerization except in the initial stage. The rate constants for the continuous polymerization were very different from the batch polymerization previously studied, despite their similarities in nature. The mass transfer rate of the emulsifier from the micelles to the polymer particles requires future study.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 83-92 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effect of reaction conditions on the rate of radiation-induced emulsion polymerization of ethylene was studied by use of a 500-ml autoclave. Among various kinds of emulsifiers, a series of potassium salts of fatty acids gave high rates of the polymerization. The polymerization was inhibited by the presence of oxygen, but the rate of polymerization followed by the induction period was not influenced by the initial presence of oxygen. Stirring rate and the monomer: water ratio did not affect the rate of polymerization. The rate of polymerization was maximum at about 80°C, and number-average molecular weight was influenced by the temperature in a similar manner as the rate of polymerization. This suggests that the change of mobility of propagating radical in the polymer particle changes the rate of termination reaction. The rate of polymerization was proportional to the 1.7 power of the reaction pressure.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Radiation-induced emulsion polymerization of ethylene with potassium myristate as an emulsifier was studied in connection with the kinetics and the mechanism. The molecular weight of polymer was relatively low, of the order of 103, when a sufficient amount of emulsifier was used. However, polyethylene gel was produced in the absence of a sufficient amount of emulsifier. The rate of polymerization was proportional to the 0.5 power of dose rate and increased slightly with increasing emulsifier concentration. The rate of seeded polymerization followed a similar trend to that for conventional polymerization. Kinetic analysis of these results suggests that the escape of radicals produced by chain transfer of propagating radical with the emulsifier and the monomer from polymer particles into the aqueous phase plays an important part in the rate of polymerization. The melting temperature and the crystallinity of the polymer significantly decreased with increasing polymerization temperature in the range 40-60°C.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 1585-1608 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effects of temperature on the radiation-induced polymerization of ethylene in bulk and in the presence of ethyl alcohol, n-butyl alcohol, tert-butyl alcohol, cyclohexane, 2,2,4-trimethylpentane, and 2,2,5-trimethylhexane were studied. The changes of the amounts of polymerized monomer with the reaction temperature were different from each other in these reaction systems, especially in the range lower than 60-80°C. At temperatures lower than 60-80°C, as the reaction temperature increases, the amount of polymerized monomer decreased in bulk and in the presence of tert-butyl alcohol. The amount was almost constant in the presence of ethyl alcohol and 2,2,4-trimethylpentane, and it increased in the presence of n-butyl alcohol, cyclohexane, and 2,2,5-trimethylhexane. However, in the temperature range higher than 60-80°C, the amount of polymerized monomer increased with increasing temperature in every reaction system except for bulk polymerization. The molecular weight of polymer decreased with increasing temperature in every reaction system except at temperatures lower than 25°C. The molecular weight of polymer formed in bulk, in tert-butyl alcohol, and also in 2,2,4-trimethylpentane were relatively higher than that in other reaction systems. A bimodal molecular weight distribution was observed for the polymer formed in bulk and in tert-butyl alcohol at 40-60°C. These results are discussed in connection with the heterogeneity of the reaction system. The differences due to temperature in each reaction system are explained as due to the difference in affinity of the reaction system for the propagating chain and in the facility of chain transfer to the medium.
    Additional Material: 29 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 1629-1646 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The radiation-induced heterogeneous polymerization of methyl methacrylate in various precipitants, mainly methyl alcohol, was carried out, and the effects of reaction conditions on the polymerization behavior and the molecular weight distribution of polymer were studied. Bimodal molecular weight distributions were found for the polymer produced by the heterogeneous polymerizations in methyl alcohol and in tert-butyl alcohol. The apparent activation energy is 1.0 and 4.5 kcal/mole, respectively, for the polymerization at a monomer concentration of 10 vol-% in methyl alcohol above and below 35°C. The polymerization at a monomer concentration lower than 40 vol-% in methyl alcohol proceeded with the precipitation of polymer. The dose rate exponent of the mean rate of heterogeneous polymerization decreased from 0.5 to a smaller value as the polymerization progressed. The ratio of the two peaks in the bimodal molecular weight distributions of polymer produced in methyl alcohol was affected by the reaction conditions. These results show the coexistence in the polymerizations of two different physical states of propagating chain, a loose state and a rigid one. The reaction scheme is discussed in connection with the physical factors which affect the solubility or the mobility of propagating chains, and the rate of elementary reactions, which influences the degree of propagating chains.
    Additional Material: 20 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Chemistry Edition 12 (1974), S. 1609-1618 
    ISSN: 0360-6376
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The radiation-induced polymerization of ethylene in cyclohexane was carried out in a reactor of 100 ml capacity under a range of temperature of 25-150°C, dose rate of 4.1 × 104-2.9 × 105 rad/hr, pressure of 200 kg/cm2, and amount of cyclohexane of 20-90 ml. The polymerization was found to proceed at a steady state from the beginning. The polymerization rate is maximum at ca. 50 ml of cyclohexane. The dose rate exponent of the polymerization rate was 0.6 at every temperature from 25 to 150°C. The polymer molecular weight is in the range of 103-104, independent of dose rate, and decreases with increasing amount of cyclohexane. The molecular weight distribution is unimodal and narrow. Kinetic analysis of these results indicates that the polymerization proceeds via a simple scheme of homogeneous polymerization and the polymer molecular weight was determined by the chain transfer reaction which takes place mostly with cyclohexane. The unimodal and narrow molecular weight distribution is also consistent with the homogeneous polymerization scheme.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...