ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1970-1974  (2)
  • 1
    Series available for loan
    Series available for loan
    Hanover, NH : U.S. Army Cold Regions Research and Engineering Laboratory
    Associated volumes
    Call number: ZSP-202-121
    In: Research report / Cold Regions Research and Engineering Laboratory, 121
    Description / Table of Contents: Abstract: Stable pressure systems over interior Alaska, sometimes produce prolonged, extreme (below -40°C) cold spells at the surface. The meteorological conditions responsible for two such cold spells are discussed in detail in Appendix A, where it is shown that the rate of radiative cooling of the air is enhanced by suspended ice crystals which are themselves a result of the initial cooling. Radiation fogs formed during the onset of cold spells are generally of short duration because the air soon becomes desiccated. These fogs consist of supercooled water droplets until the air temperature goes below the "spontaneous freezing point" for water droplets (about -40°C); the fog then becomes an ice crystal fog, or simply "ice fog. " During the cooling cycle water is gradually condensed out of the air until the droplets freeze. At this point there is a sharp, discontinuous decrease in the saturation vapor pressure of the air because it must be reckoned over ice rather than over water. The polluted air over Fairbanks allows droplets to begin freezing at the relatively high temperature of -35°C. Between -35 and -40°C the amount of water vapor condensed by freezing of super cooled water droplets is 3 to 5 times greater than the amount condensed by 1°C of cooling at these temperatures. This results in rapid and widespread formation of ice fog (Appendix B) which persists in the Fairbanks area as long as the cold spell lasts. The persistence of Fairbanks ice fog depends on a continual source of moisture (4.1 x 10^6 kg H20 per day) from human activities within the fog. Ice fog crystals are an order of magnitude smaller than diamond dust or cirrus cloud crystals, which in turn are an order of magnitude smaller than common snow crystals (0.01, 0.1 and 1 to 5 mm respectively). The difference in size are shown to result from the differences in cooling rates over five orders of magnitude. Most of the ice fog crystals have settling rates which are smaller than the upward velocity of air over a city center. The upward air movement is caused by convection cells driven by the 6°C "heat island" over Fairbanks. This causes a reduced precipitation rate which permits the density of ice fog in the center center to be three times greater than that in the outlying areas. The inversions which occur during cold spells over Fairbanks begin at ground level and are among the strongest and most persistent in the world. They are three times stronger than those in the inversion layer over Los Angeles. Thus, the low-lying air over Fairbanks stagnates and becomes effectively decoupled from the atmosphere above, permitting high concentrations all pollutants. The combustion of fuel oil, gasoline and coal provides daily inputs of 4.1 x 10^6 kg CO2, 8.6 x 10^3 kg SO2, and 60, 46 and 20 kg of Pb, Br, and Cl respectively, into a lens-like layer of air resting on the surface with a total volume less than 3 x 10^9 m^3. The air pollution over Fairbanks during cold spells is further worsened, because the mechanisms for cleaning the air are virtually eliminated while all activities which pollute the air are increased.
    Type of Medium: Series available for loan
    Pages: v, 118 Seiten , Illustrationen
    Series Statement: Research report / Cold Regions Research and Engineering Laboratory 121
    Language: English
    Note: CONTENTS I. Introduction II. Air pollution Types of air pollution Temperature in versions Low temperature air pollution III. Sources of pollution-water Combustion products Cooling water from power plants · Miscellaneous sources IV. Sources of pollution other than water Electrical conductance and particulates Combustion products Summary V. Economic growth and ice fog VI. General physical properties of ice fog Optical properties Cooling rate of exhaust gases Development of a typical ice fog The effect of freezing droplets on the growth rate of ice fog VII. Structure of the polluted air layer Volume Temperature distribution and convection in Fairbanks air VIII. Mass budget of ice fog Ice fog precipitation rates Density of ice fog Ice fog evaporation rates Use of the mass budget equation Summary of the mass budget IX. Air pollution aspects of ice fog Air pollution Remedial action Ice fog probability Literature cited Appendix A. :The effect of suspended ice crystals on radiative cooling Appendix B. Nucleation and freezing of supercooled water droplets Abstract
    Location: AWI Archive
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1970-01-01
    Print ISSN: 0043-1656
    Electronic ISSN: 1477-8696
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...