ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (6)
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effect of SO2 on adenosine 5′-phosphosulfate sulfotransferase activity and various other parameters of needles from spruce (Picea abies L.) was studied using potted grafts in outdoor fumigation chambers and trees growing near a factory. In summer and autumn fumigation of grafted spruce, SO2, decreased the extractable activity of adenosine 5′-phosphosulfate sulfotransferase to 12–50% of the controls, and reduced the amount of 35S from sulphate incorporated into protein by excised branches to a comparable degree. SO2 treatment in January and February inhibited the increase in adenosine 5′phosphosulfate sulfotransferase activity measured in the controls during this time. ATP-sulfurylase activity was less affected by SO2. fumigation. In trees growing near a factory with high SO2. emission, the activity of adenosine 5′-phosphosulfate sulfotransferase was about 35% of that of trees from a control area. The low enzyme activity was correlated with a high content of sulfate and compounds containing thiol groups.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Since ferredoxin-dependent sulfite reductase (EC 1.8.7.1) and nitrite reductase (EC 1.7.7.1) can both catalyze the reduction of SO2-3 and NO−2, physiological and biochemical evidence is needed for properly classifying the two enzyme activities. They were therefore compared during ontogeny of pea leaves and in the effect of their products, sulfide and ammonium, on their catalytic activity. In the crude extract of the young second leaf of pea plants, Pisum sativum L. cv. Vatters Frühbusch, no ferredoxin-nitrite reductase activity could be detected, but ferredoxin-sulfite reductase and ATP-sulfurylase (EC 2.7.7.4), measured for comparison, were at 24 and 14%, respectively, of their maximal activity per leaf. After 11 and 12 days, respectively, ATP-sulfurylase and ferredoxin-sulfite reductase were no longer detectable, whereas ferredoxin-nitrite reductase was still at more than 30% of its maximal activity per leaf. Ferredoxin-sulfite reductase was inhibited by 50% with 18 μM and 100% with 30 μM sulfide produced by this enzyme during its assay. Sulfide at 100 μM added to the assay mixture completely inhibited ferredoxin-sulfite reductase activity in the crude extract, the 30000 g pellet and its supernatant. The same addition reduced ferredoxinnitrite reductase activity by 20% in the crude extract and by 100% in the 30000 g pellet. NH+4 at 100 μM did not affect ferredoxin-sulfite reductase or ferredoxin-nitrite reductase activity.The inhibition by sulfide and the changes in activity during ontogeny similar to ATP-sulfurylase (which catalyzes the first step of assimilatory sulfate reduction) represent biochemical and physiological evidence for the correct classification of ferredoxin-sulfite reductase. The complete inhibition of ferredoxin-nitrite reductase activity in the 30000 g pellet by S2- indicates that this activity was due to a ferredoxin-sulfite reductase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 67 (1986), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Enzyme activities of assimilatory sulfate reduction were measured in leaves of Pisum sativum L., cv. Vatters Frühbusch, during their ontogenetic development, and during treatment with H2S and cyst(e)ine. Ribulose bisphosphate (RuBP) carboxylase (EC 4.1.1.39) and ferredoxin-dependent nitrite reductase (Fd-NiR, EC 1.7.7.1) were measured for comparison. In etiolated pea leaves, ATP-sulfurylase (ATPase, EC 2.7.7.4), adenosine 5′-phosphosulfate sulfotransferase (APSSTase), ferredoxin-dependent sulfite reductase (Fd-SiR, EC 1.8.7.1) and O-acetyl-L-serine sulfhydrylase (OASSase, EC 4.2.99.8) activities were measured in appreciable rates, while neither RuBP carboxylase nor Fd-NiR activities could be detected.During the first 2–7 days after transfer into the light all enzyme activities increased. After reaching maximal activities, ATPase, APSSTase, and Fd-SiR activities decreased in all leaves to low or indetectable levels during the following 3–6 days. RuBP carboxylase, Fd-NiR and OASSase, on the other hand, decreased slowly and were still at high levels of activity at the end of the experiment.Fumigation of pea plants with 1.5 μl l−1 H2S delayed the initial increase and the subsequent decrease of ATPase activity by 1–3 days. APSSTase activity decreased for 1–2 days, increased rapidly during the next 4–6 days and retained a high level of activity until the end of the experiment as did Fd-SiR. One to two days after the beginning of fumigation the leaves started to accumulate high amounts of cyst(e)ine.When pea plants with excised roots were placed on a nutrient solution containing cyst(e)ine, APSSTase activity decreased more on 0.2 and 0.5 mM than on 1.0 mM. Fd-SiR activity was only slightly decreased on 1.0 mM cyst(e)ine. Neither Fd-NiR nor RuBP carboxylase activities were affected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 70 (1987), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The effect of Na2SO4 concentrations from 0 to 17.6 mM in the nutrient solution of Lemna minor L. strain 6580 on adenosine 5′-phosphosulfate sulfotransferase activity was examined. Routinely, the plants were cultivated on 0.88 mA SO42−. The enzyme activity was increased by 50 to 100% after transfer to 0 or 0.0088 mM SO42−. Transfer back to 0.88 mM rapidly decreased the enzyme activity to the initial level. Cultivation on 17.6 mM Na2SO4 redueed extractable adenosine 5′-phosphosulfate sulfotransferase by 50%. The original level was rapidly re-established on 0,88 mM. In control experiments, a decrease in adenosine 5′-phosphosulfate sulfotransferase activity was also induced by K2 SO4, whereas NaCl caused a small increase. This indicates that the observed effects are dependent on the sulfate ion. ATP-sulfurylase activity measured for comparison was only significantly affected by the omission of sulfate, which induced a 20% increase, indicating that this enzyme activity from Lemna minor is less suseeptible to changes in medium sulfate than adenosine 5′-phosphosulfate sulfotransferase. A close relationship between adenosine 5′-phosphosulfate sulfotransferase activity and the content of asparagine, glutamine, non-protein thiols and sulfate in the tissue was detected, indicating a positive control mechanism induced by amides and a negative mechanism induced by thiols and sulfate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 64 (1985), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The distribution of nitrite reductase (EC 1.7.7.1) and sulfite reductase (EC 1.8.7.1) between mesophyll ceils and bundle sheath cells of maize (Zea mays L. cv. Seneca 60) leaves was examined. This examination was complicated by the fact that both of these enzymes can reduce both NO-2 and SO2-3 In crude extracts from whole leaves, nitrite reductase activity was 6 to 10 times higher than sulfite reductase activity. Heat treatment (10 min at 55°C) caused a 55% decrease in salfite reductase activity in extracts from bundle sheath cells and mesophyll cells, whereas the loss in nitrite reductase activity was 58 and 82% in bundle sheath cells and mesophyll cell extracts, respectively. This result was explained, together with results from the literature, by the hypothesis that sulfite reductase is present in both bundle sheath cells and mesophyll cells, and that nitrite reductase is restricted to the mesophyll cells. This hypothesis was tested i) by comparing the distribution of nitrite reductase activity and sulfite reductase activity between bundle sheath and mesophyll cells with the presence of the marker enzymes ribulose-l, 5-bisphosphate carboxylase (EC 4.1.1.39) and phosphoe-nolpyruvate carboxylase (EC 4.1.1.32), ii) by examining the effect of cultivation of maize plants in the dark without a nitrogen source on nitrite reductase activity and sulfite reductase activity in the two types of cells, and iii) by studying the action of S2-on the two enzyme activities in extracts from bundle sheath and mesophyll cells. The results from these experiments are consistent with the above hypothesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1617-4623
    Keywords: Protoplast fusion ; Nitrate reductase deficiency ; Kanamycin ; Nicotiana tabacum ; Nicotiana sylvestris
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The combination in the nuclear genome of a dominant resistance marker (to select against unfused wild-type cells) and a recessive deficiency marker (to select against unfused mutant cells) in a cell line should provide a system for selecting fusion hybrids between the mutant line and any wild-type line. To test this idea, we fused protoplasts from a non-morphogenic cell line of Nicotiana tabacum which was kanamycin resistant (by transformation) and deficient in nitrate reductase (NR-K+) with protoplasts from N. tabacum cv. Petit Havana clone SR1, which provided resistance against streptomycin as an additional selectable marker (NR+K-SR+). Putative hybrids were selected using a culture medium containing no available reduced nitrogen source and 50 mg/l kanamycin sulphate. After regeneration into plants, the hybrid character was demonstrated from: (i) the morphological variation of the regenerants; (ii) the chromosome number; (iii) the ability to grow on medium without a reduced nitrogen source and containing kanamycin sulphate at 50 mg/l; (iv) the presence of nitrate reductase activity; (v) the presence of the gene coding for neomycin phosphotransferase, which provides resistance to kanamycin sulphate; (vi) callus formation from leaves on medium containing 1 g/l streptomycin or 50 mg/l kanamycin sulphate; (vii) F1 plants containing nitrate reductase and the gene for neomycin phosphotransferase. Fusions between the mutant cell line (NR-K+) and three wild-type tobacco species and subsequent cultivation on medium containing no available nitrogen source but 50 mg/l kanamycin sulphate resulted in callus formation with all combinations, while hybrid plants were only regenerated when N. sylvestris was the fusion partner.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...