ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Neuroscience 13 (1990), S. 403-414 
    ISSN: 0147-006X
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 172 (1993), S. 693-706 
    ISSN: 1432-1351
    Keywords: Bees ; Routes ; Sequence learning ; Memory retrieval
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Bees of several genera make foraging trips on which they visit a series of plants in a fixed order. To help understand how honeybees might acquire such routes, we examined whether (1) bees learn motor sequences, (2) they link motor instructions to visual stimuli, (3) their visual memories are triggered by contextual cues associated with the bees' position in a sequence. 1. Bees were trained to follow a complex route through a series of obstacles inside a large, 250 cm by 250 cm box. In tests, the obstacles were briefly removed and the bees continued to fly the same zig-zag trajectory that they had when the obstacles were present. The bees' complex trajectory could reflect either the performance of a sequence of motor instructions or their attempt to reach fixed points in their environment. When the point of entry to the box was shifted, the bees' trajectory with respect to the new point of entry was relatively unchanged, suggesting that bees have learnt a motor sequence. 2. Bees were trained along an obstacle course in which different flight directions were associated with the presence of different large patches of colour. In tests, the order of coloured patches was reversed, the trajectory followed by the bees was determined by the order of colours rather than by the learnt motor sequence suggesting that bees will readily link the performance of a particular trajectory to an arbitrary visual stimulus. 3. Bees flew through a series of 3 similar compartments to reach a food reward. Passage from one compartment to the next was only possible through the centre of one of a pair of patterns, e.g. white + ve vs. black — ve in the first box, blue + ve vs. yellow -ve in the second, vertical + ve vs. horizontal — ve in the last. In some tests, bees were presented with a white vs. a vertical stimulus in the front compartment, while, in other tests, the same pair of stimuli was presented in the rear compartment. Bees preferred the white stimulus when tested in the first compartment, but chose the vertical stimulus in the last compartment. Bees reaching a compartment are thus primed to recall the stimulus which they normally encounter there. We argue that the elements which are linked together to form a route are “path-segments”, each of which takes a bee for a given distance in a given direction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 170 (1992), S. 435-442 
    ISSN: 1432-1351
    Keywords: Ants ; Landmarks ; Learning ; Navigation ; Vision
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Little is known about the way in which animals far from home use familiar landmarks to guide their homeward path. Desert ants, Cataglyphis spp., which forage individually over long distances are beginning to provide some answers. We find that ants running 30 m from a feeding place to their nest memorise the visual characteristics of prominent landmarks which lie close to their path. Although remembered visual features are used for identifying a landmark and for deciding whether to go to its left or right, they are not responsible for the detailed steering of an ant's path. The form of the trajectory as an ant approaches and detours around a landmark seems to be controlled by the latter's immediate retinal size; the larger it is, the greater the ant's turning velocity away from the landmark.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 171 (1992), S. 285-288 
    ISSN: 1432-1351
    Keywords: Ants ; Path ; integration ; Detours ; Homing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary We ask whether desert ants (Cataglyphis fortis) perform path integration on their homeward as well as on their outward journey. If path integration does occur on the return journey, then, after an enforced detour, the ant's trajectory should point directly at its nest. To test whether this is so, ants were trained to forage at a spot 25 m from their nest. As an ant began its return journey to the nest, it was caught and transported to a test area where it was released either 2 m or 12 m from a wide barrier which obstructed its homeward path. The direction of the ants' trajectory after detouring around the barrier corresponded closely to that predicted on the assumption that the home vector is accurately updated during the detour.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 175 (1994), S. 525-530 
    ISSN: 1432-1351
    Keywords: Systematic search ; Path integration ; Dead reckoning ; Desert ants ; Cataglyphis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The main navigational mechanism used by foraging desert ants of the genus Cataglyphis is path integration (dead reckoning). Any such egocentric system of navigation is prone to cumulative navigational errors. Hence, while homing Cataglyphis might have reset its path integration system and yet not arrived at the start of its foraging excursion, the nest entrance. Then it resorts to piloting or performs a systematic search for the nest. The search pattern consists of a system of loops of ever increasing size centred about the origin, i.e. the start of the search. Here we show that underlying the system of loops is a spiral search programme that gets transformed into the observed pattern of loops by the ant's idiosyncratic path-integration algorithm. The ant starts to follow a spiral course, then breaks off this course and walks towards the centre, i.e. to what its path-integration system has computed to be the origin of the search. This reset episode is followed by another spiral course, which is terminated by the next reset, and so forth. After each reset, the spiral gets wider, so that the whole pattern expands. Futhermore, every now and then the spiral might change its sign. Computer simulations based on these simple rules lead to search patterns of the kind actually recorded in Cataglyphis ants. These patterns ensure that those parts of the area in which the target (nest entrance) is most likely to be located are searched most heavily; in other words: the search density profile is adapted to the probability density function of the target.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 357 (1992), S. 586-587 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] On a summer day in the central Sahara, the silver ant, C. bombycina, is the only arthropod that forages in the full midday sun, even when surface temperatures exceed 60 °C (refs 1, 2). As a scavenger, it searches for other arthropods that were active during the night and early morning but ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 77 (1990), S. 479-482 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 80 (1993), S. 331-333 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of comparative physiology 163 (1993), S. 11-17 
    ISSN: 1432-136X
    Keywords: Discontinuous ventilation ; metabolism ; respiration ; Ant, Cataglyphis bicolor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The discontinuous ventilation cycle of the Saharan desert ant Cataglyphis bicolor was studied over the range 15–40°C, corresponding to a 〉2-fold increase in the rate of CO2 output and hence metabolic rate (Q 10=2.1). Over this range, metabolic rate modulated only ventilation frequency; the volume of CO2 emitted per ventilation remained constant. The closed-spiracle phase accounted for a small, constant proportion (ca. 14%) of total CO2 output. In the flutter phase, the rate of CO2 output increased at a greater than exponential rate from 29% of total CO2 output at 15°C to 52% at 40°C. CO2 output rate in the ventilation phase increased, and its duration decreased, exponentially with temperature. Relative to total duration of discontinuous ventilation cycle, the length of each phase was constant over the entire range of metabolic rates measured. These data are the first thorough characterization of the effect of changing metabolic rate on all phases of the discontinuous ventilation cycle of an adult insect. Clearly, C. bicolor maximizes ventilation-phase emission volumes and enhances the contribution of the flutter phase to total CO2 release relative to other ants for which comparable data are available, and does so in ways that may reduce respiratory water loss rates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1993-05-01
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...