ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Photosynthesis
  • Springer  (22)
  • 1990-1994  (22)
  • 1
    ISSN: 1432-2048
    Keywords: Light climate ; Nicotiana (photosynthesis) ; Photosynthesis ; Ribulose 1,5-bisphosphate carboxylase-oxygenase ; Transgenic plant (tobacco, antisense DNA)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tobacco (Nicotiana tabacum L.) plants transformed with ‘antisense’ rbcS to decrease the expression of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) have been used to investigate the contribution of Rubisco to the control of photosynthesis in plants growing at different irradiances. Tobacco plants were grown in controlled-climate chambers under ambient CO2 at 20°C at 100, 300 and 750 μmol·m−2·s−1 irradiance, and at 28°C at 100, 300 and 1000 μmol·m−2·s−1 irradiance. (i) Measurement of photosynthesis under ambient conditions showed that the flux control coefficient of Rubisco (C infRubisco supA ) was very low (0.01–0.03) at low growth irradiance, and still fairly low (0.24–0.27) at higher irradiance. (ii) Short-term changes in the irradiance used to measure photosynthesis showed that C infRubisco supA increases as incident irradiance rises, (iii) When low-light (100 μmol·m−2·s−1)-grown plants are exposed to high (750–1000 μmol·m−2·s−1) irradiance, Rubisco is almost totally limiting for photosynthesis in wild types. However, when high-light-grown leaves (750–1000 μmol·m−2·s−1) are suddenly exposed to high and saturating irradiance (1500–2000 μmol·m−2·s−1), C infRubisco supA remained relatively low (0.23–0.33), showing that in saturating light Rubisco only exerts partial control over the light-saturated rate of photosynthesis in “sun” leaves; apparently additional factors are co-limiting photosynthetic performance, (iv) Growth of plants at high irradiance led to a small decrease in the percentage of total protein found in the insoluble (thylakoid fraction), and a decrease of chlorophyll, relative to protein or structural leaf dry weight. As a consequence of this change, high-irradiance-grown leaves illuminated at growth irradiance avoided an inbalance between the “light” reactions and Rubisco; this was shown by the low value of C infRubisco supA (see above) and by measurements showing that non-photochemical quenching was low, photochemical quenching high, and NADP-malate dehydrogenase activation was low at the growth irradiance. In contrast, when a leaf adapted to low irradiance was illuminated at a higher irradiance, Rubisco exerted more control, non-photochemical quenching was higher, photochemical quenching was lower, and NADP-malate dehydrogenase activation was higher than in a leaf which had grown at that irradiance. We conclude that changes in leaf composition allow the leaf to avoid a one-sided limitation by Rubisco and, hence, overexcitation and overreduction of the thylakoids in high-irradiance growth conditions, (v) ‘Antisense’ plants with less Rubisco contained a higher content of insoluble (thylakoid) protein and chlorophyll, compared to total protein or structural leaf dry weight. They also showed a higher rate of photosynthesis than the wild type, when measured at an irradiance below that at which the plant had grown. We propose that N-allocation in low light is not optimal in tobacco and that genetic manipulation to decrease Rubisco may, in some circumstances, increase photosynthetic performance in low light.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Mycorrhiza 4 (1994), S. 277-281 
    ISSN: 1432-1890
    Keywords: Ectomycorrhiza ; Inoculation ; Photosynthesis ; Photosynthetic pigments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Specimens of spruce Picea abies (L.) Karsten were inoculated with the fungi Laccaria laccata, Pisolithus tinctorius and Lactarius piperatus in a nursery at the time of sowing. The 1-year seedlings were then tested in two growth periods for their photosynthesis, chlorophyll and carotenoid levels, and water potential; their roots were examined with a scanning electron microscope. Increased photosynthetic activity was determined at the start of the growth season in only those seedlings inoculated with the fungus Laccaria laccata. The levels of chlorophyll and carotenoids measured in September in the needles of all three mycorrhized groups of plants were higher than in the controls.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Synechocystis sp. PCC 6803 ; Cyanobacteria ; petD ; Cytochrome b6/f complex ; Photosynthesis ; Transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The gene encoding subunit IV of the cytochrome b6/f complex (petD) has been isolated from a genomic library of the unicellular cyanobacterium Synechocystis sp. PCC 6803. The coding region consists of 480 nucleotides and can code for a polypeptide with a molecular weight of 17.5 kDa. The deduced amino acid sequence shows high identity with the corresponding sequences of both the photoautotrophic prokaryote Nostos sp. PCC 7906 as well as of lower and higher photoautotrophic eukaryotes (e.g. Chlorella protothecoides, Nicotiana tabacum). Transformation of Synechocystis sp. PCC 6803 with a plasmid containing the cloned petD gene in which the coding sequence is interrupted by the aminoglycoside 3′-phosphotransferase gene (aph) from Tn903 resulted in the formation of km resistant transformants. The molecular analysis of independent transformants revealed that all clones were merodiploid containing both uninterrupted wild-type as well as interrupted mutant petD copies. Approaches to segregate these two genomes were unsuccessful implying an essential function of the petD gene product in Synechocystis sp. PCC 6803.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 157 (1991), S. 86-91 
    ISSN: 1432-072X
    Keywords: Chlorococcum ; Unicellular green alga ; Salt shock ; Intracellular solute concentrations ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cell volumes and intracellular concentrations of major solutes of Chlorococcum submarinum were determined before and after salinity shocks. Cells were found to shrink in size by about 30% following changes from 0.1 to 0.5 M NaCl, there was a transitory increase in sodium concentration and more permanent increases in concentrations of potassium, proline and glycerol (the major osmolyte). Conversely, cells doubled in size after the reciprocal downshock, there was rapid loss of about 70% of the cells' glycerol to the medium, a much smaller loss of cellular potassium and a steady disappearance of proline from the cells. The respiratory and photosynthetic responses to salinity fluctuations were also studied. Salinity downshocks stimulated respiration by 30% and inhibited photosynthesis by 16% within 5 min, but within 2 h these rates were identical to control rates. Upshocks caused a slight inhibition of respiration, but decreased photosynthesis by 40% within 5 min and recovery took 2 h. Downshocks had little effect on chlorophyll fluorescence, however, Fo strongly increased and both Fm and Fv/Fm declined within 5 min of salinity increases. This is consistent with a decrease in efficiency of PS2. Ecological and metabolic implications of the results are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Leaf lifespan ; Amazon ; Photosynthesis ; Specific leaf area ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The relationships between resource availability, plant succession, and species' life history traits are often considered key to understanding variation among species and communities. Leaf lifespan is one trait important in this regard. We observed that leaf lifespan varies 30-fold among 23 species from natural and disturbed communities within a 1-km radius in the northern Amazon basin, near San Carlos de Rio Negro, Venezuela. Moreover, leaf lifespan was highly correlated with a number of important leaf structural and functional characterisues. Stomatal conductance to water vapor (g) and both mass and area-based net photosynthesis decreased with increasing leaf lifespan (r2=0.74, 0.91 and 0.75, respectively). Specific leaf area (SLA) also decreased with increasing leaf lifespan (r2=0.78), while leaf toughness increased (r2=0.62). Correlations between leaf lifespan and leaf nitrogen and phosphorus concentrations were moderate on a weight basis and not significant on an area basis. On an absolute basis, changes in SLA, net photosynthesis and leaf chemistry were large as leaf lifespan varied from 1.5 to 12 months, but such changes were small as leaf lifespan increased from 1 to 5 years. Mass-based net photosynthesis (A/mass) was highly correlated with SLA (r2=0.90) and mass-based leaf nitrogen (N/mass) (r2=0.85), but area-based net photosynthesis (A/area) was not well correlated with any index of leaf structure or chemistry including N/area. Overall, these results indicate that species allocate resources towards a high photosynthetic assimilation rate for a brief time, or provide resistant physical structure that results in a lower rate of carbon assimilation over a longer time, but not both.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1939
    Keywords: Leaf anatomy ; Photosynthesis ; Functional symmetry ; Leaf orientation ; Optical properties
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The photosynthetic responses to light of leaves irradiated on the adaxial or abaxial surfaces, were measured for plants with contrasting leaf orientations. For vertical-leaf species of open habitats (Eryngium yuccifolium and Silphium terebinthinaceum), photosynthetic rates were identical when irradiated on either surface. However, for horizontal-leaf species of open habitats (Ambrosia trifida and Solidago canadensis), light-saturated rates of photosynthesis for adaxial irradiation were 19 to 37% higher than rates for abaxial irradiation. Leaves of understory plants (Asarum canadense and Hydrophyllum canadense) were functionally symmetrical although they had horizontal orientation. Photosynthetic rates were measured at saturating CO2, thus differences in the response to incident irradiance presumably resulted from complex interactions of light and leaf optical properties rather than from stomatal effects. Differences in absorptance (400–700 nm) among leaf surfaces were evident for horizontal-leaf species but the primary determinant of functional symmetry was leaf anatomy. Functionally symmetrical leaves had upper and lower palisade layers of equal thickness (vertical leaves of open habitats) or were composed primarily of a single layer of photosynthetic cells (horizontal leaves of understory habitats). Photosynthetic symmetry of vertical-leaf species may be an adaptation to maximize daily integrated carbon gain and water-use efficiency, whereas asymmetry of horizontal-leaf species may be an adaptation to maximize daily integrated carbon gain and photosynthetic nutrient-use efficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 93 (1993), S. 165-170 
    ISSN: 1432-1939
    Keywords: Photosynthesis ; Induction ; Light flecks ; Leaf lifespan ; Rainforest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the understory of a tropical rainforest, light flecks can contribute 10–80% of the total light flux. We investigated the capacity of eight shade-tolerant species to use light flecks by examining the time required for full induction of photosynthesis during an artificial light fleck. CO2 fixation rates were measured with a portable LiCor gas-exchange system for plants growing in the field on Barro Colorado Island, Panama. In all species induction to 50% of maximum CO2 fixation occurred quickly, from 1 to 3 min. In species with short leaf lifetimes (1 year), induction to 90% of maximum also occurred quickly, in 3–6 min. In contrast, the species with longer lived leaves (〉4 years) required 11–36 min for induction to 90% of maximum. Induction times for leaves from gap and understory plants of the same species were indistinguishable. Elevated CO2 did not eliminate the slow induction phase of long-lived leaves. This suggests that slow induction did not result from stomatal limitation. O2 evolution, measured on excised leaf disks, induced in 3–4 min in species with short-lived leaves, and 4–8 min in species with long-lived leaves. The rapid induction of O2 evolution indicates that the slower induction of CO2 fixation in long-lived leaves was not caused by a delay in the induction of electron transport. Activation of rubisco may be the major factor limiting response times in species with long-lived leaves. Species from Panama with short-lived leaves had remarkably rapid induction times that are comparable to those of algae or higher plant chloroplasts. We also found that understory forest plants induced two to seven times more quickly than did potted plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1939
    Keywords: Abscisic acid ; Chaparral ; Ceanothus thyrsiflorus ; Conductance ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Small shrubs ofCeanothus thyrsiflorus were grown in 19-1 pots irrigated under natural conditions in a chaparral region of Southern California and then subjected to soil drying. Characteristics of leaf gas exchange, leaf water potential, and concentrations of the stress hormone abscisic acid in the xylem sap, ABAxyl, were determined at various stages of drought. Diurnal changes in conductance were strongly correlated with leaf net photosynthesis rate, which provides an effective, integrative predictor of above-ground climate effects on conductance. In drought conditions, ABAxyl concentration increased. Increases in the concentration range of 50–500 nmol/l appeared to induce stomatal closure, restricting water loss and carbon dioxide uptake. When the momentary water potential is related to ABAxyl, ABA appeared to increase significantly only after a threshold of approximately −1.5 MPa was exceeded. At less negative water potentials, large variation in ABAxyl in the 50–1000 nmol/l range occurred for all water-potential values, because ABAxyl remains relatively constant over diurnal courses as water potentials decrease and then recover. When the water potential became more negative than −1.5 MPa, ABAxyl concentrations occurred between approximately 500 and 10 000 nmol/l and even greater in isolated cases. An approximately linear relationship is recognizable between ABAxyl and momentary water potential in this range because in plants under drought conditions, ABAxyl increases during the course of the day as water potential decreases. Increases in ABAxyl in the high concentration range were associated with relatively minor additional restrictions in gas exchange, but they might contribute to improved water use efficiency and explain diurnal changes in the potential for stomatal opening that have been observed in Mediterranean sclerophyllous species. When we examined long-term seasonal change in the response of irrigated plants, changes in average daily temperature greater than 10°C occurred (also associated with shifts in relative humidity and radiation input), which apparently led to small changes in predawn water potential in the −0.1 to −0.7 MPa range. Increases in ABAxyl occurred that were in turn negatively correlated with daily maximum leaf conductance. Thus, chaparral shrubs under non-drought conditions seem to sense even small changes in environmental conditions, in our opinion most probably due to initial drying of the uppermost soil and synthesis of ABA in the shallow roots. The results support the hypothesis that information of photosynthesis rate and predawn water potential may be used as primary variables to predict canopy conductance of Mediterranean sclerophyll shrub vegetation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1939
    Keywords: Acer saccharum ; Photosynthesis ; Forest canopy ; Sugar maple ; Nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1939
    Keywords: Canopy structure ; Coordination ; Nitrogen allocation ; Optimization ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract It has long been observed that leaf nitrogen concentrations decline with depth in closed canopies in a number of plant communities. This phenomenon is generally believed to be related to a changing radiation environment and it has been suggested by some researchers that plants allocate nitrogen in order to optimize total whole canopy photosynthesis. Although optimization theory has been successfully utilized to describe a variety of physiological and ecological phenomena, it has some shortcomings that are subject to criticism (e.g., time constraints, oversimplifications, lack of insights, etc.). In this paper we present an alternative to the optimization theory of plant canopy nitrogen distribution, which we term coordination theory. We hypothesize that plants allocate nitrogen to maintain a balance between two processes, each of which is dependent on leaf nitrogen content and each of which potentially limits photosynthesis. These two processes are defined as Wc, the Rubiscolimited rate of carboxylation, and Wj, the electron transport-limited rate of carboxylation. We suggest that plants allocate nitrogen differentially to, leaves in different canopy layers in such a way that Wc and Wj remain roughly balanced. In this scheme, the driving force for the allocation of nitrogen within a canopy is the difference between the leaf nitrogen content that is required to bring Wc and Wj into balance and the current nitrogen content. We show that the daily carbon assimilation of a canopy with a nitrogen distribution resulting from this internal coordination of Wc and Wj is very similar to that obtained using optimization theory.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...