ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Although patterns of tree species distributions along environmental gradients have been amply documented in tropical forests, mechanisms causing these patterns are seldom known. Efforts to evaluate proposed mechanisms have been hampered by a lack of comparative data on species’ ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Company
    Nature biotechnology 14 (1996), S. 1200-1202 
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] Tropical rainforests contain one-half to two-thirds of the world's flowering plants and should be a particularly rich source of pharmaceutical agents'. In comparison with plants from temperate regions, rainforest plants are subject to greater levels of herbivory and disease, and have therefore ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Chemoecology 9 (1999), S. 81-92 
    ISSN: 1423-0445
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary. Plants contain an enormous diversity and quantity of secondary metabolites, some of which are toxic and deterrent to herbivores and pathogens. This impressive diversity of plant compounds suggests a high probability of interactions among them. Synergistic interactions are those in which the combined activity of two or more chemicals is greater than that expected given their individual activities. On the other hand, antagonistic interactions are those in which the combined activity of two or more chemicals is less than that expected given their individual activities. Synergistic interactions could increase plant fitness whereas antagonistic interactions could decrease plant fitness. Interactions are thus potentially very important, not only in explaining the diversity of defense compounds within individual plants, but also in providing insight into plant defense strategies. Although synergistic interactions have received increased attention in the ecological literature in the last decade, the number of documented cases of synergy remains small and antagonistic interactions are rarely considered. The primary reason for this scarcity may be the difficulty of detecting, analyzing and displaying such interactions. Analysis by ANOVA, though sometimes used, often is not appropriate. We introduce a simple technique, isobolographic analysis, that is used in pharmacology for detecting and rigorously quantifying synergy and antagonism and provide an example using the brine shrimp toxicity assay. More statistically sophisticated approaches, such as isobolographic analysis, will allow ecologists to effectively document the role of chemical synergy and antagonism in interactions between species. Such chemical interactions may ultimately provide insight into longstanding, ecological questions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 93 (1993), S. 165-170 
    ISSN: 1432-1939
    Keywords: Photosynthesis ; Induction ; Light flecks ; Leaf lifespan ; Rainforest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the understory of a tropical rainforest, light flecks can contribute 10–80% of the total light flux. We investigated the capacity of eight shade-tolerant species to use light flecks by examining the time required for full induction of photosynthesis during an artificial light fleck. CO2 fixation rates were measured with a portable LiCor gas-exchange system for plants growing in the field on Barro Colorado Island, Panama. In all species induction to 50% of maximum CO2 fixation occurred quickly, from 1 to 3 min. In species with short leaf lifetimes (1 year), induction to 90% of maximum also occurred quickly, in 3–6 min. In contrast, the species with longer lived leaves (〉4 years) required 11–36 min for induction to 90% of maximum. Induction times for leaves from gap and understory plants of the same species were indistinguishable. Elevated CO2 did not eliminate the slow induction phase of long-lived leaves. This suggests that slow induction did not result from stomatal limitation. O2 evolution, measured on excised leaf disks, induced in 3–4 min in species with short-lived leaves, and 4–8 min in species with long-lived leaves. The rapid induction of O2 evolution indicates that the slower induction of CO2 fixation in long-lived leaves was not caused by a delay in the induction of electron transport. Activation of rubisco may be the major factor limiting response times in species with long-lived leaves. Species from Panama with short-lived leaves had remarkably rapid induction times that are comparable to those of algae or higher plant chloroplasts. We also found that understory forest plants induced two to seven times more quickly than did potted plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Climatic change 39 (1998), S. 363-379 
    ISSN: 1573-1480
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Predicting future changes in tropical rainforest tree communities requires a good understanding of past changes as well as a knowledge of the physiology, ecology and population biology of extant species. Climate change during the next hundred years will be more similar to climate fluctuations that have occurred in the last few thousand years and of a much smaller magnitude than the extent of climate change experienced during last glaciation or at the Pleistocene–Holocene transition. Unfortunately, the extent to which tropical rainforest tree communities have changed during the last few thousand years has been little investigated. As a consequence we lack the detailed evidence for population and range shifts of individual tropical species resulting from climate change analogous to the evidence available for temperate zone forests. Some evidence suggests that the rate of tropical forest change in the last several thousand years may have been high. If so, then CO2 increases and the likely alterations in temperature, forest turnover rate, rainfall, or severe droughts may drive substantial future forest change. How can we predict or model the effects of climate change on a highly diverse tree community? Explanations for the regulation of tropical tree populations often invoke tree physiology or processes that are subject to physiological regulation such as herbivory, pathology or seed production. In order to incorporate such considerations into climate change models, the physiology of a very diverse tree community must be understood. My work has focused on simplifying this diversity by categorizing the shade-tolerant species into functional physiological groups. Most species and most individual trees are shade-tolerant species, gap-requiring species being relatively uncommon. Additionally, in a regenerating gap most of the individuals are shade-tolerant species that established before gap formation. Despite the fact that the shade-tolerant species are of major ecological importance, their comparative physiology has received little attention. I have found that shade-tolerant species differ substantially in their responses to light flecks, treefall light gaps and drought. Furthermore, among phylogenetically unrelated species, these differences in physiology can be predicted from leaf lifetime. These results provide a general framework for understanding the mechanics of tropical rainforests from a physiological perspective that can be used to model their responses to climate change.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 21 (1995), S. 117-125 
    ISSN: 1573-1561
    Keywords: Extraction ; phenolics ; homogenizer ; Ouratea lucens ; Acomastylis rossii ; tannin ; sonicator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The conventional sonicator/shaker bath method for phenolic extraction was compared with a less traditional one using a homogenizer. The homogenizer proved to be both more efficient and consistent in extracting phenolics from tender, as well as tough, leaves. We propose that adoption of the homogenizer technique will increase phenolic yield and efficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-12-29
    Description: Understanding variation in resource specialization is important for progress on issues that include coevolution, community assembly, ecosystem processes, and the latitudinal gradient of species richness. Herbivorous insects are useful models for studying resource specialization, and the interaction between plants and herbivorous insects is one of the most common and consequential ecological associations on the planet. However, uncertainty persists regarding fundamental features of herbivore diet breadth, including its relationship to latitude and plant species richness. Here, we use a global dataset to investigate host range for over 7,500 insect herbivore species covering a wide taxonomic breadth and interacting with more than 2,000 species of plants in 165 families. We ask whether relatively specialized and generalized herbivores represent a dichotomy rather than a continuum from few to many host families and species attacked and whether diet breadth changes with increasing plant species richness toward the tropics. Across geographic regions and taxonomic subsets of the data, we find that the distribution of diet breadth is fit well by a discrete, truncated Pareto power law characterized by the predominance of specialized herbivores and a long, thin tail of more generalized species. Both the taxonomic and phylogenetic distributions of diet breadth shift globally with latitude, consistent with a higher frequency of specialized insects in tropical regions. We also find that more diverse lineages of plants support assemblages of relatively more specialized herbivores and that the global distribution of plant diversity contributes to but does not fully explain the latitudinal gradient in insect herbivore specialization.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-12-26
    Print ISSN: 0163-3864
    Electronic ISSN: 1520-6025
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-06-01
    Print ISSN: 0163-3864
    Electronic ISSN: 1520-6025
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2007-01-01
    Print ISSN: 0163-3864
    Electronic ISSN: 1520-6025
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...