ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 4516-4528 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe the design, construction, and characterization of an X-band multiquantum electron paramagnetic resonance (MQEPR) microwave bridge, with MQ electron–electron double resonance and MQ electron–nuclear double resonance capabilities. The main feature of the bridge is the use of double-balanced mixers as double sideband modulators to generate multiple irradiation fields with variable frequency separation. The microwave source is a low phase noise Gunn diode oscillator, the frequency of which is translated by a nominal 300±Δf MHz. This approach, called double sideband/fixed filter (DSB/FF), allows the use of fixed bandpass microwave filters to reduce incident spurious products to at least −70 dBc. Each frequency is amplified separately to avoid system-generated intermodulation (IM) sidebands in the incident irradiation. As a result, the dominant source of system intermodulation is the nonlinearity in the receiver system, consisting of a low noise amplifier (LNA) and a double-balanced signal mixer. A detailed analysis of receiver-generated IM products is presented. The use of the loop-gap resonator with a high resonator efficiency parameter, Λ, and low Q is essential to achieve a balance between microwave power and system IM sidebands. It is shown that even at maximum incident power, the levels of these sidebands can be reduced to 51 dB below the MQEPR response by switching out the LNA. This permits the extension of MQEPR applications into systems where high power is required. The operation modes of the bridge are briefly described. Alternative bridge designs are considered and compared with the DSB/FF design. It is found that the DSB/FF approach gives the best overall performance with greater flexibility and compatibility with multiple operation modes. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1995-09-01
    Print ISSN: 0034-6748
    Electronic ISSN: 1089-7623
    Topics: Electrical Engineering, Measurement and Control Technology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Plasma wave data from the Pioneer Venus Orbiter provide the largest body of data cited as evidence for lightning on Venus. These data are also the most controversial, mainly because of the ambiguity in mode identification due to limited spectral information. We review some of the more recent studies of the plasma wave data at Venus, and we demonstrate that the characteristics of the 100 Hz waves are consistent with whistler-mode waves propagating vertically from below the ionosphere. We further show that in situ instabilities are too weak to generate whistler-mode waves, mainly because the thermal pressure is comparable with the magnetic field pressure in the ionosphere of Venus. The lower hybrid drift instability has also been suggested as an alternative source for the 100 Hz waves. However, the wave properties are more consistent with whistler-mode propagation; the lower hybrid dirft instability requires very short gradient scale lengths to overcome damping due to collisions. We also note that an apparent association between Langmuir probe anomalies and 100 Hz waves is much lower than previously reported, once we apply a consistent intensity threshold for identifying wave bursts. The lightning hyposthesis remains the most probable explanation of the plasma waves detected at low altitudes in the nightside ionosphere of Venus.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Atmospheric and Terrestrial Physics (ISSN 0021-9169); 57; 5; p. 537-556
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-15
    Description: Research supported by this grant is divided into three basic topics of investigation. These are: (1) Plasma waves in the Venus magnetosheath, (2) Plasma waves in the Venus foreshock and solar wind, (3) plasma waves in the Venus nightside ionosphere and ionotail. The main issues addressed in the first area - Plasma waves in the Venus magnetosheath - dealt with the wave modes observed in the magnetosheath and upper ionosphere, and whether these waves are a significant source of heating for the topside ionosphere. The source of the waves was also investigated. In the second area - Plasma waves in the Venus foreshock and solar wind, we carried out some research on waves observed upstream of the planetary bow shock known as the foreshock. The foreshock and bow shock modify the ambient magnetic field and plasma, and need to be understood if we are to understand the magnetosheath. Although most of the research was directed to wave observations on the dayside of the planet, in the last of the three basic areas studied, we also analyzed data from the nightside. The plasma waves observed by the Pioneer Venus Orbiter on the nightside continue to be of considerable interest since they have been cited as evidence for lightning on Venus.
    Keywords: Lunar and Planetary Exploration
    Type: NASA-CR-202209 , NAS 1.26:202209
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...