ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: Plasma wave data from the Pioneer Venus Orbiter provide the largest body of data cited as evidence for lightning on Venus. These data are also the most controversial, mainly because of the ambiguity in mode identification due to limited spectral information. We review some of the more recent studies of the plasma wave data at Venus, and we demonstrate that the characteristics of the 100 Hz waves are consistent with whistler-mode waves propagating vertically from below the ionosphere. We further show that in situ instabilities are too weak to generate whistler-mode waves, mainly because the thermal pressure is comparable with the magnetic field pressure in the ionosphere of Venus. The lower hybrid drift instability has also been suggested as an alternative source for the 100 Hz waves. However, the wave properties are more consistent with whistler-mode propagation; the lower hybrid dirft instability requires very short gradient scale lengths to overcome damping due to collisions. We also note that an apparent association between Langmuir probe anomalies and 100 Hz waves is much lower than previously reported, once we apply a consistent intensity threshold for identifying wave bursts. The lightning hyposthesis remains the most probable explanation of the plasma waves detected at low altitudes in the nightside ionosphere of Venus.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Journal of Atmospheric and Terrestrial Physics (ISSN 0021-9169); 57; 5; p. 537-556
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...